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Abstract – The construction of robotics autonomous systems able to identify 
objects in their environments requires the elaboration of efficient visual object 
recognition algorithms. Our knowledge of the mechanisms of natural perception 
suggests that, when the recognition process fails due to the degradation of the 
observation conditions and to the blurring of the intrinsic attributes of the objects, 
the information concerning the context is used by human for object recognition 
priming. In this case the indices used for object identification can be greatly 
simplified. We present in this paper an attempt to precise how such a principle can 
be applied to autonomous robotics. We show that using a compact frequency 
coding of the scene together with an unsupervised SOM learning we obtain 
syntactic categories that exhibit specific relationships with object categories. Thus, 
the construction of these syntactic categories should be useful for estimating the 
occurrence probability of object categories during the exploration of the perceptual 
space of a robotic system. 

1. Introduction 

The development of autonomous robotics systems requires the elaboration of efficient 
visual object recognition algorithms. However, recognition often fails when poor 
observation conditions alter the identification of the intrinsic attributes of objects. 
Some works from natural visual perception [1] show an early use of contextual 
information, thus allowing contextual priming of objects. In this case, an object is not 
defined by a collection of intrinsic attributes but rather by a limited set of deictic 
attributes [2] related to the considered context. Our middle term aim is to precise how 
this principle can be applied to autonomous robotics visual systems. 

A first step toward an implementation of contextual priming is the definition of a 
context representation independent from the objects present in the scene. Torralba [3] 
has recently proposed to use the spatial frequency characteristics of the visual scene 
for estimating the probability of occurrence of various object categories. In this 
approach a context vector the components of which is the mean energy of the scene in 
a range of spatial frequencies and spatial orientation is computed and used to estimate 
the probability density function (PDF) ( )CVop  describing the relationship between 
the context and the presence of a given object in this context. 

However, the proposed method needs to compute a mixture of Gaussians PDF and 
is based on a Bayesian approach lying on supervised procedures. We propose here a 
method based on a first step of unsupervised clustering in order to exploit the 
structure of the data input space. 



Until now, the probabilities of occurrence of objects were obtained in a supervised 
way from the direct statistical linkage between the frequential properties of the scene 
and the objects composing it. In a robotics framework this approach must be 
reconsidered for two reasons. First, like natural systems which are the product of an 
evolution, the sensors of a robot must be adapted to their purpose. With supervised 
learning, the actual relevance of the coding is not really considered. One just tries to 
adapt the parameters of the system to obtain the right classification from an a priori 
given coding. Second, one can think that a way to lighten the computational load is to 
assign the visual scenes to a small number of contextual categories from their holistic 
characterization. The so defined contexts must be significant, in the sense that 
priming requires that they exhibit specific relationships with different object 
categories. 

To define these contextual categories we propose a factorization of the conditional 
probability of object occurrence according to the contextual vector through the 
introduction of an intermediate level of clustering. We thus obtain the relation:  
( ) ( ) ( )Cii CiC VKpVKopVop ∑= ,  

An unsupervised learning step with a self-organizing map [4] allows an implicit 
computation of the probability ( )ci VKp  that an example belongs to a given cluster. 
Clusters can be viewed as intermediate categories based on the syntactic properties of 
the image.  

In a second step, one computes the probability ( )iKop  of occurrence of objects 
associated with the different clusters according to the approximation 
( ) ( )ici KopVKop ≈, . 

This approach is an answer to three questions: how to determine the kind of 
clusters that emerges spontaneously from the used coding, what are the contextual 
semantic categories related to these clusters, how to encode the specific relationships 
between these clusters and the object categories? 

3. Experiments and results 

3.1. Coding choice 

Context can be represented by some holistic visual properties of the scene. The 
statistics of the structural elements of the scene resulting from different orientation 
configurations and different textures seems to allow us to discriminate contexts [5, 6].  

A multi-scale visual filtering of the images was thus carried out [7] : i) the size of 
images was standardized by convolving them with a Gaussian filter ; ii) A Gaussian 
pyramid [8] was then used: an appropriate  Gaussian filter was applied followed by a 
reduction by a factor of 2 of the image size at each step. We thus obtained a 
representation of the scene at 5 different scales, corresponding to 5 spatial 
frequencies (1/2, 1/4, 1/8, 1/16, 1/32 cyc/pixel) iii) then a bank of Gabor filters 
according to 4 orientations (0; Π/4; Π/2; 3Π/4) was applied to the resulting images iv) 



eventually, a 20 dimension signature vector (V ) of the average energies according to 
the 5 scales and 4 orientations was computed. 

c

These vectors are used to train self-organizing maps of various size according to 
the conventional Kohonen method [4] with a Mexican hat lateral inhibition and a 
progressive decay algorithm. The activations of the units were computed according to 
the Euclidian distance between the input vector and the unit vectors.  

3.2. Results. 

3.2.1. Relationships between clusters and contextual categories 

The obtained clusters exhibited properties reflecting their spatial frequency 
characteristics. The main criteria that characterize the location of the images on the 
map were linked to the degree of openness/closing, to the complexity, and to the 
preferred orientations of  the image (Figure 1). 

Fig. 1. A simplified representation of a map of 10x10 units showing examples of 
characteristic associated images. Clustering is carried out using the 20-dimension 
signature vector based on spatial frequency coding, with a whole of 2496 images 

drawn from the Corel database. 

We analyzed the relationships between the obtained clusters and two contextual 
categories, Nature and Buildings. Several self-organizing maps, ranging from 4 to 25 
units, were used for this purpose. The results obtained with the different maps being 
similar, we only show here those obtained with a map of 9 units.  

 Cluster1 Cluster 2 
Construction 0.79 0.28 
Nature 0.21 0.72 

Table 1. Percentage of pictures from a category by cluster. The learning database 
consists in  pictures of context (634 pictures : 320 from Nature and 314 from 
Construction). Note that the used contextual categories are exclusive: a visual 

scene cannot belong both to Nature and Construction.  



We observed the formation of two clusters on the map and a strong overlap 
between clusters and semantic categories (Table 1). However, the sub-clusters 
corresponding to the units seem not match with any semantic sub-categories. 

3.2.3. Relationships between Clusters and object categories 

A second category of linkage is represented by the relationship between the 
observed clusters and the objects that can be identified in the scene. In order to study 
this point we indexed our database for the presence of three object classes: aircraft 
(211 pictures), vehicles (278 pictures) and persons (1081 pictures), over 2496 
pictures from the Corel database.  
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Fig. 2. (b), (d) et (f) : Self-organizing map of 10x10 units showing the dispersion 
of the object categories over the units. (a), (c) et (e) : Cumulated histograms of the 

number of examples of each category associated with the map units. The 
theoretical curve stands for the case of a uniform distribution of the examples over 

the map (1% by units) 

Clustering was done with a map of 10x10 units. Figure 2 shows the dispersion of 
the object class examples on the map. We used entropy as a measurement of the non 
uniformity of the distribution of the examples. More the examples are grouped on few 
units, lower is the entropy of the distribution. Aircrafts are associated with units 
mainly located in two regions of the map (entropy : 4,05 ; more than 75 % of the 



pictures are grouped on 8 units). Vehicles are slightly more dispersed (entropy : 5,21 ; 
75 % of the pictures are grouped on 21 units). Dispersion of the person class is much 
more significant (entropy : 6,48 ; 75 % of the pictures are grouped on 58 units). All 
units have at least one associated picture including a person. 

4. Discussion and Conclusion 

The joint use of a compact coding and a self-organization algorithm allows us to 
gather the visual scenes according to intrinsic characteristics mainly based on their 
statistical properties. Oliva and Torralba have observed a similar result [9] when 
human subjects are asked to group visual scenes according to the scene intrinsic 
properties no matter their semantic contents. This result is in support of the adequacy 
of the coding, since we show here that an unsupervised approach enables to reach the 
same kinds of clusters without calling upon subjective categories. 

In addition, one observes an overlap between the obtained clusters and the Nature 
and Construction semantic categories. That reveals, on one hand, that these 
categories, of semantic nature, have different syntactic properties at low level and, on 
the other hand, that the used frequency coding captures the information which makes 
it possible to discriminate them at least to some extent. 

The studied categories of objects are more or less scattered on the map. This result 
can be explained by the "degree of freedom" inherent to each category of objects. The 
aircrafts and the vehicles appear either on the road, either in the sky or on an airfield. 
People have a degree of freedom much larger and thus appear in a larger range of 
contexts. This assumption is also supported by the relative over-representation of this 
category compared to the others (aircraft: 211 pictures; vehicle: 278 pictures; person: 
1081 pictures).  

Objects belonging to different context are grouped on different units of the map. 
Therefore, priming should be done according to the clusters1 and uses the probability 
matrices computed for each object category. 

Practically, for an unknown example, the winning unit is first determined. Then, 
for a given object category the occurrence probability is obtained from the suitable 
matrix. However, this probability reflects the properties of the training set. In order to 
improve generalization, a PDF must be estimated from the learning data.  

This PDF can be obtained through the association with each unit of a normal 
density distribution. This PDF is thus viewed as a mixture of Gaussians introduced 
after the training phase of the SOM using the RKDE [10] method or during learning 
with a probabilistic version of the Kohonen algorithm [11] 

We see here the advantage of determining intermediate contextual categories. The 
direct computation of )( cVop  requires the introduction of a mixture of Gaussian for 
each object category. Here the PDF is computed once on the training data. For each 
object category, one has to compute a simple matrix the size of which is the size of 
the SOM. 

                                
1 These clusters are syntactic contextual categories whose definition is extensional 
(determined by the examples associated with the units of the map). 
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