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A single net system based on Kohonen’s Feature map was trained using a 
combined vector that contains visual features of an image and its collateral 
keywords. The performance of the single net was compared with a multinet 
system, comprising two SOMs, one trained with visual features and the other on 
keywords, in the presence of a Hebbian network that learns to associate visual 
features with keywords. The multi-net system performs better than the single net. 
Similar results were obtained when Grossberg’s ART networks were used instead 
of SOMs. 

 

1 Introduction 

 Recent work on content-based image retrieval (CBIR) systems has sought 
inspiration from text-retrieval literature [13]. It has been argued that the all-
important visual features can help in the classification (and retrieval) of images but 
only up to a certain extent:  In some cases, the visual features have to be 
supplemented by an image-external linguistic description of the contents of the 
images in a CBIR system [8]. The collateral linguistic description, for example 
salient words, describing key objects in the image is then used to annotate the image, 
and in querying for the image subsequently either by using visual features or 
keywords, or a mixture of the two [2]. The salient words can still be ambiguous as 
experts describing the same image sometimes use different words [10]. Linguistic 
ambiguity notwithstanding, neurobiological studies indicate that multi-sensory 
perception is used in a range of cognitive tasks including attention and pattern 
recognition in noisy environments [4]. This cross-modal interaction has helped in 
establishing systems that use information in one modality to classify or retrieve 
information in another – keywords may be used to retrieve images and vice versa. 
Cross modality may facilitate the development of systems that can learn to 
automatically attach keywords to images that have no collateral description – auto-
annotation- and to automatically illustrate a set of keywords with images – auto-
illustration [15].  
 We have been investigating whether or not the addition of linguistic features to a 
visual feature vector will improve the performance of a system that will learn to 
classify a set of images without a priori knowledge of the categories [1]. One way in 
which this investigation has proceeded has been to train a neural computing system, 
for example Kohonen’s Self Organising Feature Maps (SOM, [6]) or Grossberg’s 
Adaptive Resonance Theory-based networks (ART, [5]), using a vector that comprises 
both visual and linguistic features. The performance of this system, trained on a 



monolithic vector, is then compared with a multi-net system that comprises one 
network that is trained using vectors with visual features only, and another network 
trained with vectors with linguistic features only. The two systems are trained 
independently but in the presence of a third system that learns the association 
between the most activated nodes in the two independents. For the multinet based on 
SOMs we have used a Hebbian network for the association [15], and for ART 
networks we have used the so-called map field of the fuzzy ARTMAP network [3]. 
The connections amongst the two SOMs are fully bi-directional: each node in one 
SOM is connected to all the nodes in the other SOM. For the fuzzy ARTs, connected 
through the map field, the connections are not bi-directional. 
 A commercially available 50,000-image database, that has keywords associated 
with each image, (the Hemera Photo Objects www.hemera.com) was chosen for 
training and testing. Each of the images is that of a pre-segmented single-object and 
belongs to one of the 100-annotator chosen categories. Ten of these categories were 
arbitrarily selected and over 100 images per category were randomly selected from 
the collection. In all, 1036 images were selected for training the network and an 
additional 115 were used for testing. The category information attached with each 
image was not used in training the networks.  
 Currently, our results indicate that a CBIR system that is based on a multi-net 
architecture performs better than the one of a single net architecture. These findings 
tend to confirm the claims that a combination of autonomous, possibly specialist, 
neural networks may reduce model complexity; fuse the output of the constituent 
autonomous networks; improve generalisation; and restrict over-fitting [11].  

2 Background and Motivation 

 Modern CBIR systems are expected to deal with the deluge of images that are 
becoming available due to the Internet and due to digital photography [14]. Such 
systems have to classify images into fairly complex categories for facilitating 
systematic storage and efficient retrieval. However, these categories are either not 
known in advance or do not reflect the ontology of a given domain as understood by 
less knowledgeable members of the domain. This has motivated us to chose learning 
systems that do not require an ab initio description of categories. It has been observed 
that visual features will underconstrain the description of an image and that such 
features have to be supplemented by information in other modalities – especially 
modalities like language that facilitate the articulation of categories. We have chosen 
a linguistic feature vector to supplement the information available in the visual 
description of images. 
 Self-Organising Maps have been used extensively in a number of neural 
computations, including organising large collections of documents [6], and in 
building CBIR systems [7]. The Kohonen maps, using a competitive learning 
algorithm, obtain ‘a small set of important features’  by a non-linear method based on 
a layer of adaptive units that gradually develop into an array of feature detectors. The 
output map of a trained SOM does not cluster the input vectors per se, rather similar 
input vectors are placed close to each other on the map. The literature on SOMs 



indicates that some authors use a sequential clustering approach [12]: the SOM 
arranges the input vectors into the output map and then a statistical clustering 
algorithm (for example ‘k-means’ ) identifies the cluster boundaries.  
 The Adaptive Resonance Theory was developed by Grossberg and his colleagues as 
a way to overcome the so-called stability-plasticity dilemma [5]. ART networks are 
capable of performing on-line incremental clustering of the input data into an 
arbitrary number of categories depending on the value of an internal parameter called 
vigilance. ART networks have also been used extensively in a number of 
classification problems, including text clustering [9].  

3 Method: Architecture, Training and Testing 

3.1 Architecture 

The choice of the number of nodes in the input and output layers of the various 
networks was determined by reference to the image collection under consideration.  
 Input:  The dimensionality of the visual feature vectors can more or less be fixed 
with reference to conventional CBIR systems: visual attributes related to shape, 
edges, texture and colour have been outlined in some detail. A 67 dimensional vector 
was used – 21 colour features were used together with 19 edge features, 20 from 
textures and 7 for shape.  
 The dimensionality of the linguistic vector is not as easy to determine:  for the 
Hemera Collection, a total of 10,018 descriptors were attached to the 1151 images we 
had selected. On average 8.8 terms were attached to each image by Hemera experts. 
Each image was treated as a ‘document’  –comprising keywords only- and 
information retrieval metrices of term-frequency/inverse document frequency (tfidf) 
were used to select amongst the terms for each of the 10 Hemera categories. Rarer 
terms will not be as representative of a category as compared with more frequent 
terms. Frequency and tfidf values were used to create a 30 dimensional vector. The 
use of more keywords leading to 50 and 100 dimensional vectors, did not improve 
performance.  
 Output:  The dimensions of the output map for the SOMs were computed by trial-
and-error: a 15X15 network offered the best balance between performance and 
training time when compared to smaller (e.g. 10X10) or larger (e.g. 50X50) map.  
 The output map of the trained SOMs for both single and multinet experiments was 
clustered in n-classes using the ‘k-means’  algorithm. The number n was chosen to be 
equal to the number of classes into which the humans classify the data.  
 The number of nodes on the output layer of an ART network (category nodes) 
depends on the vigilance parameter. For the single ART experiments we varied the 
vigilance parameter from a minimum value of 001.0min =ρ to a maximum of 

300.0max =ρ in order to achieve a number of category nodes close to n. For the fuzzy 

ARTMAP experiments again we varied vigilance to constrain the number of nodes in 
the second fuzzy ART module close to n while allowing the category nodes in the 
first module to expand. 



 

3.2 Training 

 Single Net Training: The SOMs and the fuzzy ARTs were each trained on a 97 
dimensional vector (67 visual features and 30 keyword-related features). The SOM’s 
were trained for a 1,000 epochs. The training epochs for the fuzzy ARTs were 
determined by the complexity of the data sets. 
 Multi-net Training:  The two SOMs were trained respectively on a 67 
dimensional visual feature vector and a 30 dimensional keyword-based vector. The 
mediating Hebbian network helped to strengthen (or weaken) the connections 
between the nodes of the two SOMs that were simultaneously active (or inactive) 
during one training cycle. 
 In the fuzzy ARTMAP network, two fuzzy ART modules are linked together by a 
map field. According to the literature, fuzzy ARTMAP is mainly used for supervised 
learning where the first fuzzy ART module receives an input vector, while the second 
the corresponding target vector. In our case we did not use a target vector, but instead 
the second modality vector. This way each fuzzy ART is presented with an input 
vector and once both modules determine the winning node, the map field learns the 
association between the nodes of the two fuzzy ARTs. In case there is a mismatch 
because of previous associations, a new node has to be selected in the first module. 
This procedure is repeated for all input vectors until no more mismatches occur.  

3.3 Testing 

 The testing procedure for the single net systems is as follows: (a) present to the 
network an unseen testing vector; (b) find the best matching unit for the testing 
vector; (c) if using SOMs then find the class given to that node by ‘k-means’ ; (d) 
calculate the evaluation measures using the information about the true (expert’s) 
classes and the classes assigned by the ‘k-means’  algorithm (or the category 
representation layer of the ART network). The testing procedure for the multi-net 
systems is the same as that for the single-net systems except for the fact that the 
winning node in one network (linguistic/visual) stimulates a corresponding node in 
the other network (visual/linguistic). 
 The performance of the single- and multi-net systems was measured using so-
called F-measure which, in turn, depends on precision (fraction of retrieved images 
that are relevant) and recall (fraction of relevant images that are retrieved) statistics; 

)rp(rp)1(F 22 +⋅β⋅⋅+β=β , where p is precision, r is recall, and 
�
 a weighting 

parameter between precision and recall, which in our case was set to 1.  

4 Experimental Results  

The performance of the three systems, single-net system, multi-net (auto-illustration) 
system and multi-net (auto-annotation) system was compared using the 115 test 
vectors. The performance of single net SOM is comparable with that of a multi-net 



SOM when the input to the multi-net is a visual feature vector and the constituent 
visual SOM activates the node belonging to the correct category node in the keyword 
SOM. However, when the multinet is presented with a keyword feature vector then 
its performance is about 30% better than that of the single net SOM. (see Table 1).  
 For the fuzzy ARTMAP, however, we have mixed results. The performance of the 
single-net fuzzy ART is much poorer than that of a multinet fuzzy ARTMAP that 
receives a visual feature stimulation and retrieves the ‘correct’  text node – a 100% 
increase in performance when two fuzzy ARTs connected with a map field are used 
instead of a single monolithic fuzzy ART. When a keyword feature vector is 
presented to the fuzzy ARTMAP, the network cannot converge to a solution because 
it tries to link similar high level concepts (keyword feature vector) to dissimilar low 
level visual properties while forcing the number of category nodes in the output layer 
of the image sub-module to remain close to the number of classes into which the 
humans classify the data. In the opposite scenario (visual features as input) the 
network managed to converge because we do not limit the number of category nodes 
for the highly variable visual features in the input sub-module. 
 

TABLE 1 F-MEASURES FOR THE PERFORMANCE OF SINGLE NET AND MULTINET SYSTEM FOR IMAGE 

RETRIEVAL USING A COMBINED 97-DIMENSIONAL TEST VECTOR THE SINGLE NET SYSTEM AND 30 & 67 
DIMENSIONAL TEST VECTORS FOR THE MULTINET SYSTEM.  . 

System Input Output SOMs Fuzzy ART(MAP)s 
Single Net Monolithic  

vector 
Monolithic  

vector 
0.36 0.17 

MultiNet     
AUTO-
ANNOTATION 

Visual Feature  
Vector 

Keyword Feature 
Vector 

0.38 0.35 

AUTO-
ILLUSTRATION 

Keyword Feature  
Vector 

Visual Feature 
Vector 

0.48 No convergence 

 
 We have examined the visual feature vectors and the keyword feature vectors in 
detail. The categories produced by the visual feature vectors are considerably diffused 
than is the case for the keyword feature vectors. This result is not surprising – 
keywords are a direct expression of a category in that, for example, the term 
mammal, for example, will represent a whole class of hairy animals that feed their 
infants. However, an equivalent visual feature that captures animals of all colours, 
shapes, and textures is well nigh impossible to conceive.  
 The overall poor performance of all the networks reported above is to a large 
extent due to the poor discrimination power of the visual features used in the study. 
F-measures obtained for a SOM (or a fuzzy ART) that only classifies keyword 
vectors and is tested on it, are in the region of 0.8, whereas the corresponding F-
measure for visual feature vectors is around 0.2.  

5 Conclusions 

The above results confirm a long-held opinion in the image retrieval community 
that visual features invariably constrain an image and that conjunctive use of the two 



modalities is more beneficial for image retrieval. What the multinet system also 
demonstrates is that when one modality of information cannot discriminate between 
two objects successfully, then another modality needs to be cued in to improve the 
overall performance.  
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