
A probabilistic framework for mismatch and
profile string kernels

Alexei Vinokourov1, Andrei N. Soklakov2 and Craig Saunders1 ∗

1- University of Southampton - School of Electronics and Computer Science
Southampton, Hants, SO17 1BJ - UK

2- Royal Holloway, University of London - Department of Mathematics
Egham, Surrey, TW20 0EX - UK

Abstract. There has recently been numerous applications of kernel
methods in the field of bioinformatics. In particular, the problem of pro-
tein homology has served as a benchmark for the performance of many new
kernels which operate directly on strings (such as amino-acid sequences).
Several new kernels have been developed and successfully applied to this
type of data, including spectrum, string, mismatch, and profile kernels.
In this paper we introduce a general probabilistic framework for string
kernels which uses the fisher-kernel approach and includes spectrum, mis-
match and profile kernels, among others, as special cases. The use of a
probabilistic model however provides additional flexibility both in defini-
tion and for the re-weighting of features through feature selection methods,
prior knowledge or semi-supervised approaches which use data repositories
such as BLAST. We give details of the framework and also give preliminary
experimental results which show the applicability of the technique.

1 Introduction

In this paper we focus on the protein homology problem, which has become
a benchmark for the application of string-type kernels. The model we present
however has a wider range of applications to other sequence data, as the proba-
bilistic framework allows for many tailored kernels to be produced, each with a
clear method for introducing prior knowledge. In particular we derive as special
cases of the model, the profile [2] and mismatch kernels [3] which have been
shown to achieve state of the art performance on the protein homology problem
whilst retaining computational efficiency due to their efficient implementation
using fast string matching algorithms such as suffix trees.

We first give some general definitions that will be useful later on. Let α be
a string of symbols from a fixed alphabet A, i.e. α ∈ A*. In what follows we
will use the notation α[i] to mean the ith symbol in α (i = 1, 2, . . . , |α|) and
by α[i : j], where j > i, a section of the string beginning with the ith symbol
and ending with the jth symbol. Let Φ(α) be a feature vector with components

∗The first and third author thank the EPSRC for their support through grant no
GR/S22301/01 (“Development and Application of String-Type Kernels”)

φβ(α). The corresponding kernel is then defined as a dot product in the feature
space

k(α1, α2) �
∑

β

φβ(α1)φβ(α2) . (1)

Features in these kernels are based on counts of fixed length substrings β ∈ Ak of
strings α ∈ A|α| denoted as #(β|α). Wherever �� surround a boolean expression
they will mean an indicator function: �A� = 1 if A is true and 0 otherwise.

We shall mostly be concerned with kernels where individual features corre-
spond to contiguous substrings of a fixed length k. One such elementary feature
mapping is given by

φβ(α) = #(β|α) �
|α|−k+1∑

i=1

�α[i : i + k − 1] = β� , (2)

which is often referred to as the ngram or spectrum kernel.
A mismatch kernel [3] is a step further to account for possible mutations

in input strings. A (k,m)-mismatch neighbourhood of a k-length string α is
denoted N(k,m)(α) and is a set of all such k-length strings that differ from α in
no more than m symbols. The mismatch kernel feature mapping of a string α
is then defined in the following way:

φmismatch
β (α) �

|α|−k+1∑
i=1

�β ∈ N(k,m)(α[i : i + k − 1])�. (3)

Despite the large number of features this kernel can be efficiently computed, see
[3] for details.

A profile P(α) of a string α is given by P(α) = {pi(a) : a ∈ A}|α|
i=1, where

pi(a) is the probability of observing symbol a at position i, and
∑

a∈A pi(a) =
1. In the application domain of protein sequences, profiles can be obtained
for example by using tools such as PSI-BLAST. A k-length profile segment at
position i is then simply P(α[i : i + k − 1]). One can define a neighbourhood
similar to a (k,m)-mismatch neighbourhood but in a ’profile sense’: A profile
neighbourhood PN(k,σ)(P(α[i : i + k − 1])), i = 1, . . . , |α| − k + 1, is a set of k-
length strings which differ from α[i : i+k− 1] with a log-probability not greater
than σ:

PN(k,σ)(P(α[i : i + k − 1])) =
{

β ∈ Ak : −
k∑

j=1

ln pi+j−1(β[j]) < σ
}

,

The profile kernel [2] is then defined by the feature vector

φprofile
β (α) �

|α|−k+1∑
i=1

�β ∈ PN(k,σ)(P(α[i : i + k − 1])� . (4)

Using the profile kernel in conjunction with PSI-BLAST has been shown to
be experimentally superior to the mismatch kernel [2]. In order to aid future
comparisons we shall rewrite (4) in a slightly more general way. Since we are
given a profile P(α[i : i + k − 1]) it would be natural to weight each component
with the corresponding probability:

φweight−profile
β (α) �

|α|−k+1∑
i=1

�β ∈ PN(k,σ)(P(α[i : i + k − 1]))�Pα(β @ i) , (5)

where Pα(β @ i) �
∏k

j=1 pi+j−1(β[j]).

2 A general model

The Fisher kernel [1] for a generative model P (α|Θ), with parameters Θ = {θβ}
is a kernel defined by k(x, y) = φ(x)′F−1φ(y) where F is the Fisher information
matrix and φ(·) is the Fisher score vector for the example, which in our case is
defined as the following mapping:

φFisher
β (α) � ∂ ln P (α|Θ)

∂θβ
.

Due to the difficulty of computing Fisher Information matrix, the näıve Fisher
kernel is often used where F is replaced by the identity matrix. Details on Fisher
kernels are omitted due to lack of space, please see [1] for details.

For our model we consider extending our original sequence by a series of
mutations, motivated by the observation that the similarity of two sequences
could be measured by the similarity of mutations they produce. Let Mα be the
set of all possible mutations of string α. For every mutation µ ∈ Mα we assume
to know its probability Pµ|α and the effect it has on the original string α → µ(α).
The importance of each mutation can be visualized using the concept of a bag of
mutated strings D as follows. Let D = {α1, α2, . . . , αN} be a bag of mutations
of the original string obtained by drawing randomly a sequence of mutually
independent mutations µ1, µ2, . . . , µN ∈ Mα according to the distribution Pµ|α
(where αi = µi(α), i = 1, 2, . . . , N). We define the probability of D as the
average

PN (D) =

(
N∏

i=1

P (αi)

)1/N

. (6)

Let us assume that P (αi) are given by a k-stage Markov model, then by letting
Bα be the set of all k-length substrings β in the sequence α we can show that
under this assumption P (α) =

∏
β∈Bα

pβ , where pβ is the probability of observ-
ing a substring β (details omitted due to lack of space). Substituting this into
(6) and taking the natural logarithm gives

ln PN (D) =
1
N

N∑
i=1

∑
β∈Bαi

ln pβ . (7)

In order to calculate derivatives correctly, we follow [1] and parameterize our
model using arbitrary real numbers τβ ; that is we use parameters τβ such that
pβ = τβP

β τβ
. This gives

∂ ln PN (D)
∂pβ

=
1
N

N∑
i=1

#(β|αi)
τβ

− 1
N

∑
β τβ

N∑
i=1

|αi| − k + 1. (8)

If all strings are of equal length, then the second term in the equation is constant
and therefore does not need to be considered. This condition can easily be
satisfied by inserting ’dummy’ symbols at the start of shorter sequences. In the
following we use pβ rather than τβ as the two models can be made equivalent.
Let #(γ|D) be the number of times the string γ appears in D, and let D be the
set of all (different) strings that constitute D. Then one can find that

∂ ln PN (D)
∂pβ

=
1
N

∑
γ∈D

#(β|γ) #(γ|D)
pβ

. (9)

For large values of N one can replace the ratio #(γ|D)/N by the probability
Pµ|α of the mutation that corresponds to γ, i.e. γ = µ(α). Similarly, for large
enough N , the set D contains strings resulted from almost all possible mutations
Md, and therefore

∂ ln PN (D)
∂pβ

N→∞−→ φprofker−fisher
β (α) =

1
pβ

∑
µ∈Md

#(β|µ(α)) Pµ|α . (10)

The direct use of (10) demands large computational resources: in the most
general case one has no alternative apart from using Monte-Carlo sampling over
all possible mutations. Let us now develop approximations that result in a much
more efficient algorithm. As a byproduct of our analysis we derive the profile
and mismatch kernels.

Let Pα(β @ r, s, t, . . . |u, v, w, . . .) be the probability of finding β as a substring
of µ(α) at any of the positions r, s, t, . . . given that it was not found at u, v, w
Then, the probability, Pα(β), that β was found in µ(α) regardless of the position
can be calculated as

Pα(β) = Pα(β @ 1) + Pα(β̄ @ 1|β @ 2)Pα(β @ 2) + . . .

+ Pα(β̄ @ 1, . . . , (|α| − k) |β @ (|α| − k + 1))Pα(β @ (|α| − k + 1)) , (11)

where β̄ denotes the set of strings that are different from β. In (11) we have
written out a decomposition of Pα(β) starting with the position 1. It is clear
that one can write similar expressions for Pα(β) starting with any position i, i.e.,
Pα(β) = Pα(β @ i)+Pα(β̄ @ i |β @ (i+1))Pα(β @ (i+1))+ . . . , where we assume
that after the position |α| − k + 1 we proceed with the position 1, 2, . . . to go
through all the positions as in (11). We have |α|−k +1 of such decompositions,
and since all of them are equivalent we can write Pα(β) as the average

Pα(β) =
1

|α| − k + 1

|α|−k+1∑
r=1

|α|−k+1∑

i=1

Pα(β @ i) πi,r
α

 , (12)

where πi,r
α ≤ πi,r−1

α ≤ · · · ≤ πi,1
α = 1.

Let Nk
α be the total number of different strings of length k that can be derived

as substrings of all possible versions {µ(α)}µ∈Mα
of the original string α. Then

the expected number of times that a string β appears as a substring in µ(α)
is

∑
µ∈Mα

#(β|µ(α)) Pµ|α = Pα(β)Nk
α . Substituting this into (10) we obtain

φprofker−fisher
β (α) = Nk

α

pβ
Pα(β) . Ignoring the higher order terms in (12) we thus

obtain from (10)

φprofker−fisher
β (α) =

Nk
α

pβ
Pα(β) ≈ Nk

α

(|α| − k + 1) pβ

|α|−k+1∑
i=1

Pα(β @ i) . (13)

One can ignore small terms in the sum above by introducing a threshold σ:

φprofker−fisher
β (α) ≈ Nk

α

(|α| − k + 1) pβ

|α|−k+1∑
i=1

�β ∈ N(k,σ)(P (α @ i))�Pα(β @ i) .

(14)
Apart from the prefactor this coincides with the weighted profile kernel (5). It
can be observed also that the mismatch kernel (3) can be recovered from (14)
by setting all profiles Pα(β[j] @ i) to a constant value, in which case profile
neighbourhoods PN(k,σ) turn into mismatch neighbourhoods N(k,m).

3 Experiments

In order to show the applicability of the model we performed preliminary exper-
iments using a similar setting to that used in [4, 3, 2] for the SCOP dataset. For
our experiments we chose a subset collected by Liao et al. [5] which has been
described as lacking positive training examples and therefore more challenging.
As is standard we plotted the number of protein families with performance above
given ROC score vs. ROC score for each method.

For the spectrum and mismatch kernels we used the parameters k = 5 and
m = 1 which have been shown to yield good performance. For the profile kernel
(profker) we used (k = 4, σ = 6). We then compared these standard kernels to
the Monte Carlo approach to (10), where we have generated N = 20 mutations of
each training example and then applied the spectrum and mistmatch kernels on
the extended mutated sequences (denoted ext-spectr and ext-mism respectively).
In order to obtain the parameter estimates pβ needed for (10) we simply counted
the frequency of k-length subsequences in the training examples in order to get
a estimate. The probabilites Pα(β @ i) were obtained using PSI-BLAST. In all
cases, we added a prior of 0.5 for the probability of ’non-mutation’; higher values
than this did not affect results, but setting this prior too low causes too many
random mutations and loses the information in the original sequence. Finally
we also give results for the first-term approximation to the profker-fisher kernel,
with pβ generated as above. The results can be seen in Figure 1. One can
observe that even the first approximation of (12) achieves the state-of-the-art
performance of the profile kernel.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

plain−mism
spectr
ext−spectr
ext−mism
profkernel
profker−fisher

Fig. 1: The number of protein families with performance above given ROC score
vs. ROC score for each method.

4 Conclusions

We have presented a general probabilistic model for sequences, based on the
idea of extending the original sequence by series of mutations obtained from a
general probabilistic model. By analysing the limit case N → ∞ of Nth-rank
Monte-Carlo approximations to the model, we obtain a very general feature
mapping; although one that is difficult to compute. However we show that by
making rather weak assumptions one can obtain a computable version of the
mapping (14) which includes state of the art performing profile kernel as well as
mismatch and spectrum kernels as special cases. This framework provides a basis
further theoretical analysis of string kernels along with possible modifications
and extensions.

References

[1] T. Jaakkola, M. Diekhaus, and D. Haussler. Using the fisher kernel method to detect
remote protein homologies. Journal of Computational Biology, 7(1,2):95–114, 2000.

[2] R. Kuang, E. Ie, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-based string kernels
for remote homology detection and motif extraction. In 3rd International IEEE Computer
Society Computational Systems Bioinformatics Conference, pages 152–160, 2004.

[3] C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. Noble. Mismatch string kernels for
discriminative protein classification. Bioinformatics, 20(4):467–76, 2004.

[4] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A string kernel for SVM protein
classification. In Pacific Symposium on Biocomputing, pages 566–575, 2002.

[5] C. Liao and W. C. Noble. Combining pairwise sequence similarity and support vector
machines for remote protein homology detection. In Proceedings of the Sixth Annual
International Conference on Research in Computational Molecular Biology, 2002.

