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Abstract. Enforcing diversity explicitly in ensembles while at the same
time making individual predictors accurate as well has been shown to be
promising. This idea was recently taken into account in the algorithm
DIVACE. There have been a multitude of theories on how one can enforce
diversity within a combined predictor setup. This paper aims to bring
these theories together in an attempt to synthesise a framework that can
be used to engender new evolutionary ensemble learning algorithms. The
framework treats diversity and accuracy as evolutionary pressures that can
be exerted at multiple levels of abstraction and is shown to be effective.

1 Introduction

There have been many studies into developing holistic classification schemes for
ensemble methods. We are mainly concerned with ways in which diversity can
been enforced in various ensemble learning algorithms. A very appropriate clas-
sification scheme was recently presented by Brown et al. [3]. According to them
[3] this scheme encapsulates a majority of the proposed ensemble methods. We
are essentially concerned with this classification scheme as it includes, according
to our knowledge, more ensemble methods in it than any other classification
scheme, which is one reason we have tried to develop an ensemble constructing
framework that revolves around it as will be seen shortly.

What we wanted in our framework was to make it flexible enough such that
while creating an ensemble, diversity could be enforced in as many ways as
possible (exploiting the classification scheme of Brown et al. [3]). Moreover,
Yates and Partridge [7] came up with a scheme which puts diversity generating
methods, as alluded to above, into various levels depending on the efficacy of each
in enforcing diversity within an ensemble. According to them, methodological
diversity is the most effective diversity generating method. This is followed by
training set structure, architecture of the learning machine and initial conditions
for the base learners in this particular order. Consolidating these ideas into an
evolutionary scheme leads us to propose a hierarchical framework which can be
used for synthesising new ensemble learning algorithms. It should be noted here
that DIVACE [4], with its explicit treatment of diversity and accuracy, forms a
embryonic part of this framework and can be said to be one of the motivations
behind proposing it. As will be seen, the framework models a generic scheme
from which new ensemble learning algorithms can be instantiated. We present



this framework together with an algorithm or instance resulting from it, followed
by some empirical results to validate its promise shortly.

2 A Proposed Merger

A possible evolutionary framework for the construction of diverse hybrid ensem-
bles can be described by Figure 1. As can be seen, there are three levels of
evolution present. First is the evolution of the mix i.e. evolving the mixture of
the various types of predictors. Second, we consider evolution of the ensemble
based on the structure of the training set (given the mix). A process similar to
the original DIVACE forms the third and final evolutionary level.
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Fig. 1: The proposed framework.

The framework shows that the hybrid ensemble at Level 2 will have subsets
of different types of predictors. These subsets can, in themselves, be considered
as homogeneous ensembles and evolved in accordance with DIVACE, keeping
the other subsets fixed. Level 3 can be called as the DIVACE stage where repro-
duction depends on the evolutionary factor(s) chosen for a given predictor type.
The factors could be architectures or weights in case of NNs, kernel function in
case of SVMs, architectures of RBFNs etc.

Level 3, due to its subset evolution process, enforces competition between
the various subsets. This competition makes the framework as a whole model a
co-evolutionary learning strategy where subspecies (subsets) compete with each



other to stay in the ensemble. Additionally, these very species cooperate at the
immediate higher level (Level 2) and compete again at Level 1. The framework
therefore embodies both competitive and cooperative co-evolution within a multi-
objective and multi-level evolutionary setup. The choice on the placement of
these levels essentially depends on the prior knowledge available. However, the
above mentioned co-evolutionary theme would be most effective if we keep this
very ordering in the levels or at least let the innermost level stay where it is as
it makes more sense to have a hybrid set of predictors and then let the subsets
compete with each other than to enforce competition without having a mix.

3 An Instance of the Framework: DIVACE-II

Here we presents our algorithm i.e. DIVACE-II which can be thought of as being
one instance of the framework. In DIVACE-II, we try to incorporate all the lev-
els mentioned in the framework presented in the previous section. However, one
should limit the ensemble construction approach to as fewer levels as possible
depending on domain knowledge due to the computationally intensive nature of
evolutionary methods. We model all three levels in our algorithm mainly to test
the effectiveness of the framework. We use a technique similar to AdaBoost [2]
while initialising the predictor population as well as generating offspring. The
idea is to generate a new training set, 1/4th of which is generated in a manner
similar to AdaBoost and the rest of the instances are chosen randomly from the
original training set. Lets call this as the train generate procedure.Following is
the DIVACE-II algorithm:

Step I: Initialise the population of predictors 1 using Bagging [2] and the variant
of AdaBoost [2] discussed above.
Step II: Perform k-means clustering [5] using the Euclidean distance (with re-
spect to the failure patterns 2 of the predictors on the original training set) to
form M clusters and select the best 3 predictor from each cluster to form the
initial ensemble.
Step III: Repeat until termination conditions (a certain number of generations
in our case) are met.

1. Preserve the elite: archive the current ensemble if it dominates the previous
best ensemble (based on training and test accuracies).

2. Evaluate the individuals in accordance with the two objective functions
(accuracy and diversity) 4 and label the non-dominated set as in [4].

1Population contains p number of NNs, p number of SVMs and p number of RBFNs, where
p = 20.

2A failure pattern is a string of 0s and 1s indicating success or failure of the learning machine
on the training instances in the original training set.

3Best/worst individual/predictor wherever mentioned is in terms of accuracy on the original
training set

4Multi-objective formulation similar to that in DIVACE [4] where accuracy was formulated
as the mean squared error and diversity as the correlation penalty function in [6].



3. All non-dominated individuals are selected as parents. Misclassified train-
ing examples have their probability values increased as in AdaBoost and
then train generate applied.

4. If non-dominated individuals = total number of individuals in the current
ensemble then goto 5.

• Generate an offspring pool 5 using the training set generated in the
previous step and applying train generate for all the types of predic-
tors being used.

• Cluster the offspring pool using k-means clustering where the number
of clusters is decided by the number of dominated individuals.

• Replace the individuals that are dominated with the best individual
from each cluster while making sure that only the individuals which
are common with respect to types are replaced. This replacement
strategy ensures equal representation of each type of predictor.

• Goto 6.

5. Generate an offspring pool 6 using the training set generated in 3 and
applying train generate, the size of which is equal to the number of types of
predictors being used. Replace the worst individual (in the population and
one which is not in the ensemble) of the same type (as the best individual
in this pool) with the best from this pool.

6. Re-cluster the population with the number of clusters equal to the size of
the ensemble. This is done to ensure that there is only 1 member from each
cluster present in the ensemble at all times. The best member is selected
to be included in the new ensemble.

7. (Optional) Level 3 evolution. Perform DIVACE for the various subsets in
the new ensemble which subsequently gives rise to a newer ensemble.

Step IV: Use the archived ensemble as the final hybrid ensemble.

4 Results and Comparison

DIVACE-II was tested on 2 benchmark data sets (Australian credit card assess-
ment dataset and Diabetes dataset), available by anonymous ftp from ice.uci.edu
in /pub/machine-learning-databases. We compare it with MPANN (both vari-
ants from [1] - we refer to these as MPANN1 and MPANN2 here), DIVACE [4]
and EENCL [6] due to the experimental setup 7 in all these being similar.

5Pool contains q number of NNs, q number of SVMs and q number of RBFNs, where q = 15.
6Pool contains 1 NN, 1 SVM and 1 RBFN.
7n-fold cross validation used here. n = 10 for Australian and n = 12 for Diabetes dataset.

Learning rate for NNs is not the same as that used in [1, 4, 6] as the evolutionary process is
inherently very different and we use methodologically different learners. Moreover, we evolve
the population for 50 generations as opposed to 200 in [1, 4, 6].



Table 1 shows interesting properties of the algorithm in that, the mean test
accuracy is higher than the mean training accuracy for both datasets, which
mainly suggests that (on an average) the generalisation ability of DIVACE-II
is good i.e. it does not seem to overfit. MPANN2, DIVACE and EENCL on
the other hand have higher mean training accuracies and so it can be said that,
although these methods hold promise and do show good signs of generalisation,
DIVACE-II performs even better due to its test accuracy being much higher.
MPANN1 is the other algorithm having a mean test accuracy greater than its
mean training accuracy but here again, the mean test accuracy (and mean train-
ing accuracy) is not better than DIVACE-II.

Taking the case of training for both datasets (from Table 1), as compared
to ±0.005 for DIVACE-II, other approaches show slightly more variable char-
acteristics in having confidence intervals of ±0.011, ±0.009, ±0.004 and ±0.006
respectively. On an average (averaging out the confidence intervals established
to illustrate the difference and calling the result as ‘average variability’), the
four approaches considered for comparison have confidence intervals of the or-
der ±0.0075 whereas for DIVACE-II this is ±0.005. A similar situation can be
seen for the Diabetes dataset where we have ±0.004 for DIVACE-II as opposed
to ±0.007 for others. So, we can say that DIVACE-II is less variable i.e. per-
forms well on the training front. On the testing front, for the Australian credit
dataset, the confidence intervals established for DIVACE-II can be given by
±0.0223 whereas these are ±0.0298 for other approaches. The latter is higher,
signifying more variability on an average. Same is true for the Diabetes dataset
where the interval established by DIVACE-II is ±0.0146 as opposed to ±0.0234
for others. Generally speaking, DIVACE-II does compare well with previously
studied approaches. Also, the stability (low values for standard deviation) of
DIVACE-II over multiple repetitions of cross validation is depicted in Table 2.

Table 1: Confidence intervals with a confidence level of 95% for training and
testing of DIVACE-II and other algorithms on both datasets. Results computed
using accuracy rates obtained from 10 and 12 folds for the Australian and Dia-
betes datasets respectively.

Training Testing
Algorithm Australian Diabetes Australian Diabetes
DIVACE-II .877 ± .005 .771 ± .004 .895 ± .0223 .789 ± .0146
MPANN1 .854 ± .011 .771 ± .013 .862 ± .0303 .779 ± .0186
MPANN2 .852 ± .009 .755 ± .011 .844 ± .0347 .744 ± .0192
DIVACE .867 ± .004 .783 ± .003 .857 ± .0303 .766 ± .0322
EENCL .891 ± .006 .802 ± .004 .857 ± .0241 .764 ± .0237
average variability ±.0075 ±.007 ±.0298 ±.0234



Table 2: Average performance (training and testing accuracy rates) of DIVACE-
II on both datasets. Results averaged on 10 cross validation repetitions.

Australian Diabetes
Training Testing Training Testing

Mean (SD) 0.875 (0.003) 0.897 (0.005) 0.768 (0.004) 0.781 (0.009)

5 Conclusion

The main idea behind pursuing this research was to come up with a generic en-
semble construction model that could be used to generate new ensemble learning
algorithms. Bringing together diversity enforcement mechanisms with DIVACE
at the backdrop essentially results in an evolutionary framework that rolls these
diversity enforcement ideas into one multi-level ensemble learning strategy where
individual predictors are generated automatically by successively competing and
co-operating with each other. An algorithm resulting from the framework was
presented as well to prove its effectiveness/validity. DIVACE-II is generally
seen to outperform most of the algorithms it is compared with rendering the
framework valid. This establishes our idea of enforcing diversity at multiple lev-
els (which is modelled by our framework) as being plausible. To conclude, the
framework proposed here looks promising but much work still remains to be done
in order to establish it as/or come up with a truly generic model for ensemble
construction from which new ensemble learning algorithms can be synthesised.
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