
Self-Organizing Maps Computing on 
Graphic Process Unit  

Luo Zhongwen1, Liu hongzhi1, Yang Zhengping1 Wu Xincai1*  

1- China University of Geoscience(Wuhan) - Faculty of Information Engineering 
Wuhan 430074, China 

Abstract. Self-Organizing Maps (SOM) is a widely used artificial neural 
network (ANN) model. Because of its heavy computation load when the map is big 
and inherent parallel, there is a need to apply a parallel algorithm on it. As a SIMD 
parallel processor, Graphic processing unit (GPU) shows a fast growing speed than 
CPU. And it also provides programmability recently. In this paper, the algorithm 
and result of SOM computing on GPU has been given. The result shows that GPU 
can make SOM computing much faster than standard CPU. Some design tricks for 
improving the efficiency of computing has discussed. Based on the results and 
current trends in the development of GPU, it is reasonable to expect that graphic 
hardware will widely used in other ANN computing for getting high-performance. 

1 Introduction 

The Self-Organizing Maps, also called Kohonen feature map (KFM) [6] is a particular 
kind of artificial neural network (ANN) model, which consists of one layer of n-
dimensional units (neurons). It is fully connected with the network input. Additionally, 
there exist lateral connections through which a topological structure is imposed. For 
the standard model, the topology is a regular two-dimensional map instantiated by 
connections between each unit and its direct neighbors. 

In recent years, the graphic hardware performance is doubled every 12 
months which is much faster than CPU’s performance increase which is doubled 
every 18 months. And GPU vendors had made it possible to program on it, which 
enable us to implement general-purpose computation. 
 Bohn[1] describes an SOM calculation method based on OpenGL hardware 
speed-up on SGI workstation, which inspired our work to further deploy the 
possibility to implement SOM calculation based on PC commodity graphic hardware. 
For other related works, Kyoung-Su Oh et al.[4] implements a fast computation of 
MLP on GPU, and give an almost 20 time speed up over CPU. Thomas Rolfes[7] gives 
an artificial neural network implementation using a GPU-based BLAS level 3 style 
single-percision general matrix-matrix product.  
 In this paper, our approach detail and result are given. In section 2, we give 
the computational model and deploy the possibility to implement a KFM computing 
based on PC graphic hardware. In section 3, we give our computation result and 
compare the performance increase of GPU over CPU and then discuss some of our 
implementation details. In section 4, we give our conclusion and some directions for 
further researching. 
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2 Computational Model and Implement method 

2.1 Computational Model and test on Graphic Card 

The KFM takes a two step computation: searching for the best matching unit and 
modifying the value according to a distance function of the lateral connections. For 
best matching unit search, we usually take a Euclid distance as measure method. The 
calculation formula takes as follow: 
                                    || Wb – ξ || ≤  || Wi – ξ ||   for any i;                                [1] 
Modify the unit value regarding a distance function of the lateral connections. 
                                     Wi

new=Wi
old-εΩ(rb,ri)*(Wi

old- ξ )                                [2] 
 As Bohn described, three OpenGL[8] extension functions were needed, they 
are blending, glColorMatrix and glminmax. These functions are fully supported by 
SGI workstation, but only partially supported by PC graphic card. For example, 
glColorMatrix is not supported by NVIDIA’s card and glminmax is not supported by 
ATI’s card. To solve this function “missing” probelm, we can copy the intermediate 
result to main memory and calculate the result in CPU. The test result is as follow: 

CPU /ms OpenGL Graphic card /ms 
120 4000 

 Table 1: Computational Time for SOM on CPU and OpenGL 

It shows that the performance of PC graphic card can not match that of CPU’s. The 
deficiency partially comes from the use of readpixel to copy intermediate result from 
video memory and partially comes from the use of drawpixel to activate some of the 
computing. 

2.2 CG implementation on PC commodity graphic hardware 

As discussed in the previous part of this section, some of the OpenGL vender’s 
extension functions are not supported by PC commodity graphic card. But recently, 
graphic hardware vendors had provided programmability and some high-level 
program languages [5] for GPU. In our implementation, we choose Cg [2] (C for 
graphic) as our develop environment.  
 As described in section 2.1, the calculation contains two steps. Firstly we 
need to find the best matching unit (BMU), and then adjust the value according to the 
distance from BMU.  
 For the BMU computation, we use a two step computing. In the first step, we 
calculation similarity as follow:  
 c.x = dot((tex2D(texture,coords)-intrain),(tex2D(texture,coords)-intrain)); 
 c.yz= coords.xy; 
The first sentence calculates the Euclid distance of two vectors, here the dot function 
calculate the inner product of two vector, and tex2D function looks at the texture table 
and return the vector value. The second sentence saves the unit’s coordinate.  
 The main difficulty in CG computation is how to find the minimum value 
and determine its location, for there is no global variable in CG environment. We use 
a multi-pass method to calculate it. So the second step for finding the BMU is shown 



as in Fig 1. In each pass we find the minimum value of four units and save the result 
in a texture of smaller size. After a few steps, the size decreases to 1, and we can get 
the minimum value and its location. 

 
Fig. 1: Scheme for minimum value computing.  

After finding BMU, we can adjust the Self-Organize Map according to equation 2. 

2.3 Some more implementation detail and lessons 

In this section, we will give some implementation tricks and the lessons we learned 
during our implementation.  
 Firstly, create same fragment program for only one time. For each time we 
create a new program, the Cg will compile it, and which is time consuming. We don’t 
notice this at first, and the result is really bad, which makes us almost to give up. 
 Secondly, if possible, do your best to decrease the number of calculation 
passes. In our first implementation, we use the scheme described in previous section. 
We find that the main bottleneck is in finding minimum function. We guess that may 
because the searching minimum function uses a multi-pass, so we decrease the 
number of pass by two schemes. First we combine the value calculation with one pass, 
second in the finding minimum function we calculate 16 units instead of just 4 units 
that decreases the passes by a factor of two. The result shows in table 2. GPUA is 
calculated on ATI card and GPUN is calculated on NVIDIA card. We can see the 
performance increase is clear. 
 Thirdly, do your best to decrease the data exchange between CPU and GPU. 
Usually we can use OpenGL’s PBuffer to save the intermediate result in a texture and 
reuse it as a input data. Especially Harris[3] had provided a class Render to Texture to 
easy the use of PBuffer. We have used this class in our program. 
 
 



 
KFM size 128*128 256*256 512*512 

GPUA more pass /ms 366 400 533 
GPUA few pass /ms 211 244 511 
GPUN more pass /ms 190 640 2889 
GPUN few pass /ms 104 256 900 

Table 2: comparison between more pass and few pass.  

3 Result and Discussion 

Our test environment is INTEL P4 2.4G for CPU computing. Based on this PC, we 
had using ATI 9550 and Nvidia 5700 for GPU computing. A typical GPU result 
shows in Fig 2. 

 
Fig. 2: Typical result for GPU computing. 

3.1 CPU and GPU train time and discussion 

 We had made a series computation for the training of Self-organize Map.  
We choose 80 data to train the SOM and make an iteration to get the average time for 
the computation on CPU and GPU. The result shows in Fig 3. 
 The result shows that our GPU based implementation is faster than CPU, 
especially for large Self-Organize Map. The increasing of computation time is less 
than that of CPU. And different GPU had different result, for Nvidia’s card, it takes 



the least time for small size SOM like 128*128, but for ATI’s card it takes the least 
time for larger size SOM like 256*256. We think that the difference comes from 
vendor’s hardware implementation. It seems that ATI’s card takes more time for the 
compiling and loading of program and the code is better optimized so computation 
time will decrease with more data, and Nvidia’s card takes less time for preparing and 
takes more time to computing.  
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Fig. 3: SOM training computing time on GPU and CPU 

3.2 The difference of graphic hardware vender 

Apart from the previous difference, there are other differences happened in different 
graphic hardware venders. For example, for the calculation of minimum value, the 
following code gives a correct result in ATI card. 
 c=tex2D(texture,coords).x<tex2D(texture,coords+half2(0,offset)).x? 
  tex2D(texture,coords):tex2D(texture,coords+half2(0,offset)); 
But the result is wrong in an Nvidia’s card. It may because that the inner parallel 
schemes which makes the difference. To work around it, we change the above 
sentence to the following logical equivalent one: 
 half4 c=tex2D(texture,coords); 
 if (c.x>tex2D(texture,coords+half2(0,half_side)).x) 
  c=tex2D(texture,coords+half2(0,half_side)); 
And correct result can be obtained in both cards. 

4 Conclusion 

In this paper, an implementation of Self-Organize Map on graphic process unit has 
described. We try to use the inherent parallelism of commodity graphic hardware to 



accelerators the computation of SOM and succeed. The result shows that GPU is 
capable for the SOM calculation, the graphic hardware make it possible for an 
increasing performance/cost ratio on the area of high-performance computing. 

Compared to Bohn’s initial computation on SGI workstation, our implementation 
has two benefits. One is our calculation is more precise, for we had use the float point 
computing. The other is that we only use a commodity available graphic card, which 
is easily available than SGI workstation so can be widely used.  

Our implementation on graphic hardware has other implicit benefit too, which is 
some future works we hope to do. First we can use a multi-texture or 3-D texture to 
save the map and make more general SOM computing without the restriction of the 
vector length of 4. We can also do other general ANN computation on GPU, because 
GPU provides almost all arithmetic operations, logic operations and some important 
mathematic functions. And for the application of neural network on images, it is more 
native to make such computing on a graphic hardware. 

From above discussion and our test result, we believe as a hardware speedup 
method, commodity graphic hardware will become increasingly important to high-
performance computing, and there will be more results appeared in the neural network 
computing based on GPU. 
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