
Novel Algorithm for Eliminating Folding Effect
in Standard SOM

Kirmene Marzouki1 Takeshi Yamakawa2

1-School of Computer Science and Systems Engineering, Department of Control and Systems

Engineering, Kyushu Institute of Technology,

680-4 Kawazu, Iizuka City, Fukuoka 820-8502, JAPAN

2- Graduate School of Life Science and Systems Engineering, Department of Brain Science and

Engineering, Kyushu Institute of Technology

2-4 Hibikino, Wakamatsu-ku, Kitakyushu City, Fukuoka 808-0196, JAPAN

Abstract. Self-organizing maps, SOMs, are a data visualization technique developed to
reduce the dimensions of data through the use of self-organizing neural networks. However, as
the original input manifold can be complicated with an inherent dimension larger than that of
the feature map, the dimension reduction in SOM can be too drastic, generating a folded feature
map.
In order to eliminate this phenomenon, we extend the neighborhood concept to a new set of
sub-neighbors, other than those introduced by Kohonen. The modified algorithm was applied to
color classification and performed very well in comparison with the traditional SOM.

1 Introduction

This work is based on a former publication [1] of the same authors. In our previous
work, we introduced some modifications on the standard SOM algorithm, allowing to
the final map being independent from the units’ weights vectors initial states. Inspired
from Neural Gas Network [2], we have introduced a new type of neighbors based on
weights vectors distance. We also introduced a new learning rule for the new set of
neighbors using the information acquired by the net during the learning process, so
that it contributes to the formation of the final map.
Although we showed we always could have the same final weight distribution
independently from the initial conditions, the new learning algorithm we introduced
still suffers from folding generated by the border effect, also known as boundary
effect.
In this paper, we address the folding effect problem encountered in standard SOM.
In standard SOM the topology order of the prototype units is pre-determined and the
learning process is to move the initialized units onto appropriate positions in the low
dimensional feature map. As the original input manifold can be complicated with an
inherent dimension larger than that of the feature map (usually set as 2 for
visualization purpose), the dimension reduction in SOM can be too drastic, generating

a folded feature map.
Many works have addressed this issue. In [3] a spherical SOM is introduced so that

boundaries are eliminated. In [4] the authors propose an Evolving SOM (ESOM), in
which the map starts with zero units and as new inputs are fed to the network, new
nodes and new connections are created. Fritzke [5] proposed the growing neural gas
(GNG) model, which allows the neural gas model to grow by adding new nodes
adaptively. Bruske and Sommer [6] presented a similar model called dynamic cell
structure (DCS-GCS). Both GNG and DCS-GCS need to calculate local resources for
prototypes, which introduces extra computational effort and reduces their efficiency.

All modifications and improvements made so far, have been brought out by
modifying the basic structure of the unit space. We believe that the solution to the
boundary effect exists in the way learning is performed while keeping the same basic
structure.
Although many causes of the folding effect, caused by border effect, are cited and
investigated in [2-7] in standard SOM, we believe that this problem is mainly and
merely caused by the non-interactiveness of learning with the evolution of the
network during the training process. In all versions of SOM, learning is performed
identically from the start of the training process till its end. The same adaptation
equation is used all along the process without really considering the changes of the
network and the information being “learnt” so far.

In this work we propose to control the progress of the neighborhood function by
making it consistent with learning.

2 Previous Work

Besides the traditional used topographic neighborhood function, we note Nc, we

generate a new group of neighbors based on the weights distance as introduced in [2].
Each time an input vector is presented to the network, we investigate two groups of
neighbors. The first one consists of those neighbors located within Nc as defined by
Kohonen [7].
On the weight space, we define a detecting window allowing us to have a better view
of the units space and detect those units the weights of which are very close to the
BMU, but could not be selected by Nc and left apart because they are located beyond
its borders.
These units constitute the main cause of the border effect generating folding of the
feature map in standard SOM.
We note Nw the width of the detecting window, also we defined as the weight
neighborhood function (on the weight space). Let df be the distance (on the units
space) separating the BMU and the furthest unit the weight of which belongs to Nw.
The new group of neighbors consists of all units situated within df and located outside
Nc (Fig1).
Each group of neighbors follows its own learning rule.

Wi(t) = Wi(t–1) + α(t)[x(t) – Wi(t–1)] (1)

for units selected by Nc (same as in standard SOM) , and

Wj(t) = Wj (t–1) + α(t)[x(t) – Wj (t-1)] + α(t)(t/T)[Aj (t) – x(t)] (2)

for all units j belonging to the new group of neighbors, where Wj(t) is the newly
updated weight, Wj(t-1) is the old weight before update, α(t) is the learning rate, x(t)
is the input, t is the current time epoch, T is the total number of iterations, and Aj(t) is
the average of the weights of the immediate neighbors of unit j.
For more details about how we generate (2), please refer to [1].
 Input

Input Space

Units Space

Weight Space

df

 The furthest unit from

the BMU the weight of
which belongs to Nw.

Best Matching Unit.
Neighbors selected by Nc.
Nw (weight space).

Fig. 1. The two neighborhood functions and the new sets of neighbors.

For this new type of neighbors, updating is made according to a new learning
algorithm, in which not only the input information is considered, but also the
information already existing on the map is used and takes part of the training process
[1].

3 Interactive Learning

In all versions of SOM, the neighborhood function shrinks at a constant speed

independently from learning quality. In this paper we propose to use df to control the
shrinking of the neighborhood function.

If the learning process is going properly, the neighborhood function Nc should
return a value very near to df. But since Nc is computed with respect to the constantly
narrowing immediate surroundings of the BMU, after few iterations from the start of
learning, it’ll start returning values very different from df. The key idea of our
algorithm consists of matching Nc and df in order to make Nc’s evolution interactive
with training. For a matter of simplicity the two neighborhood functions we used have
the following form

Nc = Po(1– t/T) ⋅ Ri (3)

Nw = do(1– t/T) (4)
where Po and do are the values of Nc and Nw at t=0 respectively, Ri is a resizing
factor initially set to 1, t is the current time, e.g. current iteration number, and T is the
total time, e.g. Total number of iterations.
Let i be the BMU at time epoch t. From (3) and (4) the two neighborhood functions
will return Nci(t) and Nwi(t). If we force Nci(t) to be equal to dfi, we’ll have

dfi(t) = Nci (t) = Po(1– tx /T) (5)

tx = T(1 – dfi(t)/Po) (6)

Since t is the only one variable, a new time variable tx comes out. tx represents the
time epoch at which learning would be if Nci would have returned dfi (Fig. 2).
 Nc

Fig 2. Learning Progress and different case figures of Nci and dfi.
Tt

Nci

dfi

dfi

tx tx

t

If dfi ≥ Nci, it means that learning is proceeding naturally. Conversely, in the case of
dfi < Nci, learning is proceeding faster than the shrinking of Nci. In this case training

should be slowed down.

In order to make the neighborhood shrinking speed interactive with training, one
can replace t by tx in all involved equations, that is either we step back in time, or
make a jump into the future. This is neither plausible nor affordable.

Making a jump into the future means that we have to ignore the over all status of
the net for a certain number of iterations, which is very risky.
On the other hand, stepping back in time needs to restore the learnt information to the
one acquired up to tx, which is almost impossible to achieve, because even though we
manage to memorize every amount of update of all winning units at each time step,
we also need to memorize each amount of update of all neighbors, and their numbers,
of each winning unit at the same time epoch. Obviously both operations are
impossible to achieve.

We choose to assign to each unit i its own neighborhood function Nci with a
resizing factor, Ri, reflecting the delay between t and tx. Ri is used to control the
shrinking speed of the neighborhood function whenever it is necessary, as it is
explained in the next section.

4 Algorithm

Step0: Input a sample vector from the training data set.

Step 1: Find the best matching unit to the input vector. Let i be the BMU.

Step 2: From (3) and (4) we investigate Nci and Nwi, and we pick up dfi, the distance
separating the BMU and the furthest units the weight of which belongs to Nwi. At this
point the two groups of neighbors are very well identified.

Step 3: Update the two groups of neighbors. Two case figures should be considered:

Case1: dfi < Nci (tx > t)
In this case, training is proceeding faster than Nci shrinking, which means that

either we have to narrow Nci, or to inhibit the update.
Narrowing Nci means that we have to ignore the topographic neighbors returned by
Kohonen’s neighborhood function, which may encourage the creation of some
“isolated islands” on the net. Therefore, the only one solution is to temporarily stop
updating using (1), and use only (2) for all units included within Nci. In this case, the
two sets of neighbors are processed identically.
Using (2) means that updating is more likely an operation of neighborhood
strengthening rather than a real operation of update with regard to the input.
After update, we set

Ri=1 (7)

that is we keep Nci’s shrinking speed as it is for the next selections of the same BMU
unit i, but slow down the updating with regard to the input.

Case2: dfi ≥ Nci (tx < t)
In this case, training is proceeding normally, but we detect some units that may

cause folding. Updating is made according to (1) for units selected by Nci (SOM), and
according to (2) for the new set of neighbors, respectively.
After update, we define the resizing factor as

 Ri= (T- t)/(T- tx) (8)

that is in the case that this same unit i is selected as the BMU in the future, we force
its relative Nci to be less than dfi so that we keep the whole process going naturally,
while keeping an eye on those suspicious units which may cause the boundary effect.
Then we multiply Ri by the expression of Nci (3), to be considered in future selections.
It is very important to point out that Ri is to be used in the future, and not in the
following immediate steps.
Step 4: Input a new sample vector, if still available, and go to step 1. If not End of
algorithm.

5 Experimental Results

For a matter of clarity, the chosen application to test the new algorithm consists of
color mapping.
As SOM produces a mapping of classified data, it is then easy to evaluate how good a
map is and how strong the similarities between objects are. In the case of color
classification, it is very easy to check the resulted map and make comparisons
between the two algorithms.
Simulations were performed with different network topologies with different number
of training data and different iteration numbers. The training data and initial states
were three-dimensional vectors on the RGB scale having the form X1=(R1,G1,B1),
X2=(R2,G2,B2)… XN=(Rn,Gn,Bn), where Rm∈[0,255], Gm∈[0,255] and Bm∈[0,255]. At
each simulation, the initial states were drawn at random.
The shown results were performed on a 10x10 net lattice using 10000 training data
for 5000 iterations. Po and do of (3) and (4) are set to 13 and 400, respectively. These
are the maximum Euclidian distances separating two units on the unit space (10x10),
and two weights on the weight space (0-255), respectively. Representative examples
of the used initial data sets are plotted in Fig.3.

(a) (b)
Fig. 3. Two different unit space surfaces relative to the used two random initial

weight distributions, for two different simulations (a) and (b) respectively. X, Y and Z
axis are scaled [0-255] on the RGB scale.

Simulation results given by the standard SOM algorithm are shown in Fig.4. (a’)

and (b’) show the obtained colored maps and their relative unit space surfaces.
The folding of the obtained final unit space surface, in both simulations, indicates the
occurrence of the border effect. This can be easily checked on the obtained color
maps, by the presence of similarly colored different regions e.g. two purple and two
black shades on the first, and two green and two blue shades on the second,
respectively.

Simulation results given by the proposed algorithm are shown in Fig.5. We can
clearly see that in the obtained color map all colors and their different shades are very

(a’) (b’)

Fig. 4. Obtained results by the standard SOM from the two different sets of initial data
(a) and (b) respectively. The colored maps represent the final weight distributions, and

the graphs represent their unit space surfaces.

Fig. 5. Final weight distribution (colored map) and its unit space surface (front view
and back view) obtained from the proposed algorithm.

well arranged. To confirm the consistency of the classification given by our algorithm,

the front view and the back view of the obtained unit space are shown. It is very easy
to see that no boundary effect-like folding is present.
Besides, for all performed simulations, we obtained the same final weight distribution,
independently from the initial states of weight vectors, as achieved in [1].

6 Conclusion

In this paper we proposed modifications on the traditional SOM algorithm, in order

to eliminate folding generated by border effect, also known as boundary effect.
Folding effect phenomenon consists of the appearance of two similar regions at
different locations on the unit space.

The main reason of the occurrence of such phenomenon is attributed to the
dimension reduction realized by standard SOM. As the original input manifold can be
complicated with an inherent dimension larger than that of the feature map, the
dimension reduction in SOM can be too drastic, generating a folded feature map.

To cope with this problem, we introduced a control mechanism through which the
neighborhood function shrinks in an interactive manner with the training process by
the use of a resizing factor.

Besides, we also introduced a new group of neighbors, other than the topographic
neighbors, based on weight neighborhood function, so that two kinds of neighbors are
processed. For this new type of neighbors, updating is made according to a new
learning algorithm, in which not only the input information is considered, but also the
information already existing on the map is used.

The proposed algorithm was tested on a three dimensional color classification
application, and exhibited very stable behavior.
In all performed simulations, and independently from the initial states of weight
vectors, we obtained the same final weight distribution free of border effect-like
folding of the unit space.

References
[1] K. Marzouki and T. Yamakawa . Novel Learning Algorithm Aiming at Generating a Unique Units

Distribution in Standard SOM. Being submitted to ICANNGA 2005, 21st -23rd March, Coimbra
Portugal. Paper Accepted on November 15th.

[2] Martinetz, T., &Schulten, K. (1991). “Neural Gas” network learns topologies. In T.Kohonen et al.
(Eds). Artificial neural networks (Vol I,pp 397-402), Amsterdam, North Holland.

[3] H. Ritter, Self-organizing maps on non-euclidean spaces, in: S. Oja, E. Kaski (Eds.), Kohonen Maps,
Elsevier, Amsterdam, 1999, pp. 97-110.

[4] D. Deng, and N. Kasabov, ESOM: An algorithm to evolve self-organizing maps from on-line data
streams, Proc. of IJCNN 2000, (IEEE Press, 2000), VI:3-8.

[5] B. Fritzke, Growing cell structures – a self-organizing network for unsupervised and supervised
learning. Neural Networks 7 (1994) 1441-1460.

[6] J. Bruske, and G. Sommer, Dynamic cell structure learns perfectly topology preserving map, Neural
Computation 7 (1995) 845-865.

[7] T.Kohonen, Self Organizing Maps. Springer-Verlag, Berlin, Germany, 1995.

