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Abstract. Self-organizing maps, SOMs, are a data visualization technique developed to 
reduce the dimensions of data through the use of self-organizing neural networks. However, as 
the original input manifold can be complicated with an inherent dimension larger than that of 
the feature map, the dimension reduction in SOM can be too drastic, generating a folded feature 
map. 
In order to eliminate this phenomenon, we extend the neighborhood concept to a new set of 
sub-neighbors, other than those introduced by Kohonen. The modified algorithm was applied to 
color classification and performed very well in comparison with the traditional SOM. 
 
1 Introduction  
 
This work is based on a former publication [1] of the same authors. In our previous 
work, we introduced some modifications on the standard SOM algorithm, allowing to 
the final map being independent from the units’ weights vectors initial states. Inspired 
from Neural Gas Network [2], we have introduced a new type of neighbors based on 
weights vectors distance. We also introduced a new learning rule for the new set of 
neighbors using the information acquired by the net during the learning process, so 
that it contributes to the formation of the final map.  
Although we showed we always could have the same final weight distribution 
independently from the initial conditions, the new learning algorithm we introduced 
still suffers from folding generated by the border effect, also known as boundary 
effect. 
In this paper, we address the folding effect problem encountered in standard SOM. 
In standard SOM the topology order of the prototype units is pre-determined and the 
learning process is to move the initialized units onto appropriate positions in the low 
dimensional feature map. As the original input manifold can be complicated with an 
inherent dimension larger than that of the feature map (usually set as 2 for 
visualization purpose), the dimension reduction in SOM can be too drastic, generating 



a folded feature map. 
Many works have addressed this issue. In [3] a spherical SOM is introduced so that 

boundaries are eliminated. In [4] the authors propose an Evolving SOM (ESOM), in 
which the map starts with zero units and as new inputs are fed to the network, new 
nodes and new connections are created. Fritzke [5] proposed the growing neural gas 
(GNG) model, which allows the neural gas model to grow by adding new nodes 
adaptively. Bruske and Sommer [6] presented a similar model called dynamic cell 
structure (DCS-GCS). Both GNG and DCS-GCS need to calculate local resources for 
prototypes, which introduces extra computational effort and reduces their efficiency. 

All modifications and improvements made so far, have been brought out by 
modifying the basic structure of the unit space. We believe that the solution to the 
boundary effect exists in the way learning is performed while keeping the same basic 
structure. 
Although many causes of the folding effect, caused by border effect, are cited and 
investigated in [2-7] in standard SOM, we believe that this problem is mainly and 
merely caused by the non-interactiveness of learning with the evolution of the 
network during the training process. In all versions of SOM, learning is performed 
identically from the start of the training process till its end. The same adaptation 
equation is used all along the process without really considering the changes of the 
network and the information being “learnt” so far. 

In this work we propose to control the progress of the neighborhood function by 
making it consistent with learning. 
 
2 Previous Work 

 
Besides the traditional used topographic neighborhood function, we note Nc, we 

generate a new group of neighbors based on the weights distance as introduced in [2]. 
Each time an input vector is presented to the network, we investigate two groups of 
neighbors. The first one consists of those neighbors located within Nc as defined by 
Kohonen [7].  
On the weight space, we define a detecting window allowing us to have a better view 
of the units space and detect those units the weights of which are very close to the 
BMU, but could not be selected by Nc and left apart because they are located beyond 
its borders.  
These units constitute the main cause of the border effect generating folding of the 
feature map in standard SOM.  
We note Nw the width of the detecting window, also we defined as the weight 
neighborhood function (on the weight space). Let df be the distance (on the units 
space) separating the BMU and the furthest unit the weight of which belongs to Nw. 
The new group of neighbors consists of all units situated within df and located outside 
Nc (Fig1). 
Each group of neighbors follows its own learning rule. 
 

Wi(t) = Wi(t–1) + α(t)[x(t) – Wi(t–1)]                  (1) 
 



for units selected by Nc (same as in standard SOM) , and 
 
Wj(t) = Wj (t–1) + α(t)[x(t) – Wj (t-1)] + α(t)(t/T)[Aj (t) – x(t)]       (2) 

 
for all units j belonging to the new group of neighbors, where Wj(t) is the newly 
updated weight, Wj(t-1) is the old weight before update, α(t) is the learning rate, x(t) 
is the input, t is the current time epoch, T is the total number of iterations, and Aj(t) is 
the average of the weights of the immediate neighbors of unit j.  
For more details about how we generate (2), please refer to [1]. 
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Fig. 1. The two neighborhood functions and the new sets of neighbors. 
 
For this new type of neighbors, updating is made according to a new learning 
algorithm, in which not only the input information is considered, but also the 
information already existing on the map is used and takes part of the training process 
[1]. 
 
3 Interactive Learning 

 
In all versions of SOM, the neighborhood function shrinks at a constant speed 

independently from learning quality. In this paper we propose to use df to control the 
shrinking of the neighborhood function.  

If the learning process is going properly, the neighborhood function Nc should 
return a value very near to df. But since Nc is computed with respect to the constantly 
narrowing immediate surroundings of the BMU, after few iterations from the start of 
learning, it’ll start returning values very different from df. The key idea of our 
algorithm consists of matching Nc and df in order to make Nc’s evolution interactive 
with training. For a matter of simplicity the two neighborhood functions we used have 
the following form 

Nc = Po(1– t/T) ⋅ Ri                         (3) 



Nw = do(1– t/T)                            (4) 
where Po and do are the values of Nc and Nw at t=0 respectively, Ri is a resizing 
factor initially set to 1, t is the current time, e.g. current iteration number, and T is the 
total time, e.g. Total number of iterations. 
Let i be the BMU at time epoch t. From (3) and (4) the two neighborhood functions 
will return Nci(t) and Nwi(t). If we force Nci(t) to be equal to dfi, we’ll have 
 

dfi(t) = Nci (t) = Po(1– tx /T)                   (5) 
 

tx = T(1 – dfi(t)/Po)                       (6) 
 
Since t is the only one variable, a new time variable tx comes out. tx represents the 
time epoch at which learning would be if Nci would have returned dfi (Fig. 2). 
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Fig 2. Learning Progress and different case figures of Nci and dfi.  
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If dfi ≥ Nci, it means that learning is proceeding naturally. Conversely, in the case of 
dfi < Nci, learning is proceeding faster than the shrinking of Nci. In this case training 

should be slowed down. 
 

In order to make the neighborhood shrinking speed interactive with training, one 
can replace t by tx in all involved equations, that is either we step back in time, or 
make a jump into the future. This is neither plausible nor affordable. 

Making a jump into the future means that we have to ignore the over all status of 
the net for a certain number of iterations, which is very risky.  
On the other hand, stepping back in time needs to restore the learnt information to the 
one acquired up to tx, which is almost impossible to achieve, because even though we 
manage to memorize every amount of update of all winning units at each time step, 
we also need to memorize each amount of update of all neighbors, and their numbers, 
of each winning unit at the same time epoch. Obviously both operations are 
impossible to achieve. 

We choose to assign to each unit i its own neighborhood function Nci with a 
resizing factor, Ri, reflecting the delay between t and tx. Ri is used to control the 
shrinking speed of the neighborhood function whenever it is necessary, as it is 
explained in the next section.  



4 Algorithm 
 
Step0: Input a sample vector from the training data set. 
 
Step 1: Find the best matching unit to the input vector. Let i be the BMU. 
 
Step 2: From (3) and (4) we investigate Nci and Nwi, and we pick up dfi, the distance 
separating the BMU and the furthest units the weight of which belongs to Nwi. At this 
point the two groups of neighbors are very well identified. 
 
Step 3: Update the two groups of neighbors. Two case figures should be considered: 
 

Case1: dfi < Nci (tx > t) 
In this case, training is proceeding faster than Nci shrinking, which means that 

either we have to narrow Nci, or to inhibit the update. 
Narrowing Nci means that we have to ignore the topographic neighbors returned by 
Kohonen’s neighborhood function, which may encourage the creation of some 
“isolated islands” on the net. Therefore, the only one solution is to temporarily stop 
updating using (1), and use only (2) for all units included within Nci. In this case, the 
two sets of neighbors are processed identically. 
Using (2) means that updating is more likely an operation of neighborhood 
strengthening rather than a real operation of update with regard to the input. 
After update, we set 
 

Ri=1                          (7) 
 
that is we keep Nci’s shrinking speed as it is for the next selections of the same BMU 
unit i, but slow down the updating with regard to the input. 
 

Case2: dfi ≥ Nci (tx < t) 
In this case, training is proceeding normally, but we detect some units that may 

cause folding. Updating is made according to (1) for units selected by Nci (SOM), and 
according to (2) for the new set of neighbors, respectively. 
After update, we define the resizing factor as 
 
                            Ri= (T- t)/(T- tx)                         (8) 

 
that is in the case that this same unit i is selected as the BMU in the future, we force 
its relative Nci to be less than dfi so that we keep the whole process going naturally, 
while keeping an eye on those suspicious units which may cause the boundary effect. 
Then we multiply Ri by the expression of Nci (3), to be considered in future selections. 
It is very important to point out that Ri is to be used in the future, and not in the 
following immediate steps. 
Step 4: Input a new sample vector, if still available, and go to step 1. If not End of 
algorithm. 



5 Experimental Results 
 

For a matter of clarity, the chosen application to test the new algorithm consists of 
color mapping. 
As SOM produces a mapping of classified data, it is then easy to evaluate how good a 
map is and how strong the similarities between objects are. In the case of color 
classification, it is very easy to check the resulted map and make comparisons 
between the two algorithms. 
Simulations were performed with different network topologies with different number 
of training data and different iteration numbers. The training data and initial states 
were three-dimensional vectors on the RGB scale having the form X1=(R1,G1,B1), 
X2=(R2,G2,B2)… XN=(Rn,Gn,Bn), where Rm∈[0,255], Gm∈[0,255] and Bm∈[0,255]. At 
each simulation, the initial states were drawn at random. 
The shown results were performed on a 10x10 net lattice using 10000 training data 
for 5000 iterations. Po and do of (3) and (4) are set to 13 and 400, respectively. These 
are the maximum Euclidian distances separating two units on the unit space (10x10), 
and two weights on the weight space (0-255), respectively. Representative examples 
of the used initial data sets are plotted in Fig.3.  
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                (b) 
Fig. 3. Two different unit space surfaces relative to the used two random initial 

weight distributions, for two different simulations (a) and (b) respectively. X, Y and Z 
axis are scaled [0-255] on the RGB scale. 

 
Simulation results given by the standard SOM algorithm are shown in Fig.4. (a’) 

and (b’) show the obtained colored maps and their relative unit space surfaces. 
The folding of the obtained final unit space surface, in both simulations, indicates the 
occurrence of the border effect. This can be easily checked on the obtained color 
maps, by the presence of similarly colored different regions e.g. two purple and two 
black shades on the first, and two green and two blue shades on the second, 
respectively. 
 
Simulation results given by the proposed algorithm are shown in Fig.5. We can 
clearly see that in the obtained color map all colors and their different shades are very  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a’)                                    (b’) 

Fig. 4. Obtained results by the standard SOM from the two different sets of initial data 
(a) and (b) respectively. The colored maps represent the final weight distributions, and 

the graphs represent their unit space surfaces. 
 

 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5. Final weight distribution (colored map) and its unit space surface (front view 
and back view) obtained from the proposed algorithm. 

 
well arranged. To confirm the consistency of the classification given by our algorithm, 



the front view and the back view of the obtained unit space are shown. It is very easy 
to see that no boundary effect-like folding is present. 
Besides, for all performed simulations, we obtained the same final weight distribution, 
independently from the initial states of weight vectors, as achieved in [1]. 
 
6 Conclusion 

 
In this paper we proposed modifications on the traditional SOM algorithm, in order 

to eliminate folding generated by border effect, also known as boundary effect.  
Folding effect phenomenon consists of the appearance of two similar regions at 
different locations on the unit space.  

The main reason of the occurrence of such phenomenon is attributed to the 
dimension reduction realized by standard SOM. As the original input manifold can be 
complicated with an inherent dimension larger than that of the feature map, the 
dimension reduction in SOM can be too drastic, generating a folded feature map. 

To cope with this problem, we introduced a control mechanism through which the 
neighborhood function shrinks in an interactive manner with the training process by 
the use of a resizing factor. 

Besides, we also introduced a new group of neighbors, other than the topographic 
neighbors, based on weight neighborhood function, so that two kinds of neighbors are 
processed. For this new type of neighbors, updating is made according to a new 
learning algorithm, in which not only the input information is considered, but also the 
information already existing on the map is used. 

The proposed algorithm was tested on a three dimensional color classification 
application, and exhibited very stable behavior.  
In all performed simulations, and independently from the initial states of weight 
vectors, we obtained the same final weight distribution free of border effect-like 
folding of the unit space. 
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