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Abstract. This paper proposes a novel method for unsupervised en-
sembles that specifically addresses unbalanced, unsupervised, binary clas-
sification problems. Unsupervised learning often experiences the curse of
dimensionality, however subspace modeling can overcome this problem.
For each subspace created, the classifier produces a decision value. The
aggregation of the decision values occurs through the use of fuzzy logic,
creating the fuzzy ROC curve. The one-class SVM is utilized for unsuper-
vised classification. The primary source of data for this research is a host
based computer intrusion detection dataset.

1 Introduction

The purpose of this paper is to illustrate synergistic combinations of multiple
classifiers for the unbalanced, unsupervised binary classification problem. The
data explored in this paper is commonly referred to as the Schonlau et. al.
or SEA dataset[5]. Although this is a host based computer intrusion detection
dataset, the applications of this work extend beyond computer intrusion detec-
tion.

Multiple Classifier Systems (MCS) is an active area of research today. A
particularly interesting problem that involves MCS is the unbalanced, unsuper-
vised binary classification problem. An unsupervised classifier, viewed in terms
of novelty detection, cannot learn from true positive (intruders) examples. The
only examples available to learn from are true negatives, or non-intruders. Fur-
thermore, the problem is unbalanced with a low frequency of intruders. Given
a classification problem of many dimensions (perhaps >10 variables), initial ex-
perimental results indicate that the creation of subspaces and aggregation of the
subspace classification decision values results in improved classification over a
model that utilizes all variables at once.

The dataset explored in this paper contains 5000 records that measure UNIX
command usage from known users (50 users, each user contributes 100 records
where a record is 100 UNIX shell commands). For every record, 26 variables
have been created to measure the command usage behavior(such as frequency,
popularity, commands never used; see [6, 13] for a description of variables). The
data are evenly split with 2500 observations for training and 2500 observations
for testing. After eliminating all positive cases from the training data, 2391
negative cases remain which are used for training the one-class SVM. In the
testing data, there are 122 positive cases out of the 2500 observations. All data



are normalized, subtracting the mean and dividing by the standard deviation
unless indicated otherwise.

Schonlau et. al. [5] conducted the original work with this data to include:
Bayes one-step Markov model, hybrid multistep Markov model, text compres-
sion, Incremental Probabilistic Action Modeling (IPAM), sequence matching,
and a uniqueness algorithm[5]. Schonlau stressed the importance of minimizing
false positives, setting a goal of 1% or less for all of his classification techniques.
Schonlau’s uniqueness algorithm, explained in [5], achieved a 40% true positive
rating before crossing the 1% false positive boundary. Wang [14] used one-class
training based on data representative of only one user and demonstrated that it
worked as well as multi-class training. Coull et. al. [4] applied bioinformatics
matching algorithm for a semi-global alignment to this problem. Lee [8] built
a data mining framework for constructing features and model for intrusion de-
tection. Szymanski and Zhang applied a recursive data mining algorithm for
frequent patterns to detect intruders [13]. Evangelista et. al. [6] applied super-
vised learning through Kernel Partial Least Squares to the SEA dataset. Maxion
contributed insightful work with this data that challenged both the design of the
data set and previous techniques used on this data [9, 10].

2 Method

2.1 One-Class SVM

The one-class SVM is an outlier detection technique originally proposed in [11].
Stolfo and Wang [12] successfully apply the one-class SVM to this dataset and
compare it with several of the techniques mentioned above. Chen uses the one-
class SVM for image retrieval[3]. The simplest way to express the one-class SVM
is to envision a sphere or ball, and the object is to squeeze all of the training
data into the tightest ball feasible. Consider the following formulation of the
one-class SVM originally from [11] and also clearly explained in [3]:

Consider X1,X2, ...,Xn ∈ χ instances of training observations, and Φ is a
mapping into the feature space, F , from χ.

min
R∈R,ζ∈Rn,c∈F

R2 +
1
vn

∑

i

ζi (1)

subject to ‖ Φ(Xi) − c ‖2≤ R2 + ζi, ζi ≥ 0 for i ∈ [n]

This minimization function attempts to squeeze R, which can be thought of
as the radius of a ball, as small as possible in order to fit all of the training
samples. If a training sample will not fit, ζi is a slack variable to allow for
this. A free parameter, v, enables the modeler to adjust the impact of the slack
variables. The output, or decision value for a one-class SVM, takes on values
generally ranging from -1 to +1, where values close to +1 indicate datapoints
that fit into the ball and values of -1 indicate datapoints lying outside of the
ball. All experiments in this paper utilize a linear kernel.

It is commonly understood that high dimensional data suffers from a curse of
dimensionality. This curse of dimensionality involves the inability to distinguish
distances between points because as dimensionality increases, volume grows ex-
ponentially and every point tends to become equidistant. This same curse of
dimensionality occurs in the one-class SVM.



2.2 Subspace Modeling

The following approach attempts to overcome this curse of dimensionality. The
technique involves creating subspaces of the variables and aggregating the out-
puts of the one-class SVM for each of these subspaces.

Intelligent subspace modeling is an important first step. Orthogonal sub-
spaces are desired, because orthogonal subspaces measure different aspects of
the data. The idea of creating diverse classifiers is not novel [1, 7], however in
the literature the measures of classifier diversity involve functions of the classifier
output. This is feasible with supervised learning, however in unsupervised learn-
ing this is more difficult because there are no true positive examples to measure
diversity against. Intelligent subspace modeling measures diversity through the
actual data. The method involves an analysis of the correlation between prin-
cipal components of each subspace. This is by no means the only measure for
subspace diversity, however this measure achieved promising results.

Given a scaled data matrix X, containing m variables that measure n ob-
servations, create l mutually exclusive subspaces from the m variables. Assume
there are k variables in every subspace if m is divisible by l. For each subspace,
principal components can be calculated. The matrix that contains the principal
component loading vectors (eigenvectors) will be referred to as L. To determine
correlation between principal components, calculate the principal component
scores for each subspace, where S=XL. Let πi represent subspace i, and con-
sider Si as the score matrix for the πi. Calculate the pairwise comparison for
every column vector in Si against every column vector in Sj , i �= j. This would
be the equivalent of concatenating Si for all i and calculating the correlation ma-
trix, Σ. Minimizing pairwise correlation across subspaces is the interest(principal
components within subspaces are orthogonal and therefore their correlation is
zero). However, there are a combinatoric number of subspace combinations to
explore.

Searching for subspaces involved the implementation of a simple genetic al-
gorithm, utilizing a chromosome with m distinct integer elements representing
each variable. There are many possible objective functions that could pursue
minimizing principal component correlation between subspaces. One approach
is the following letting q ∈ (1, 2, ..., l):

min max
∀πq

| ρij | ∀(i �= j) (2)

The fitness of each member is simply the maximum | ρij | value from the
correlation matrix such that ρij measures two principal components that are not
in the same subspace.

2.3 Output Processing

Classifier fusion techniques similar to the methods in this paper have been dis-
cussed in [1, 7]. Classifier fusion is a relatively new field and it is often criticized
for lack of theoretical framework and too many heuristics [7]. We do not claim to
provide a solution to this criticism. The method of classifier fusion in this paper
is a blend of techniques from fuzzy logic and classifier fusion, and although it
may be considered another heuristic, it is operational and should generalize to
other security problems.



For each observation within each subspace selected, the classifier will produce
a decision value, dij , where dij represents the decision value from the jth classifier
for the ith observation. Since the distribution of the output from almost any
classification technique is questionable, first consider a nonparametric measure
for the decision value, or a simple ranking. oij represents the ordinal position
of dij (for the same classifier, meaning j remains constant). For example, if d71

is the smallest value for the 1st classifier, o71 = 1. This nonparametric measure
allows comparison of classifiers without considering the distribution. However,
the distribution is not ruled out altogether. pij , which is the scaled value for dij ,
is included. In order to incorporate fuzzy logic, oij and pij must be mapped into
a new space of real numbers, let us call Λ, where Λ ∈ (0, 1). This mapping will
be pij → δij and oij → θij such that δij , θij ∈ Λ. For oij → θij this is a simple
scaling procedure where all oij are divided by the number of observations, m,
such that θij = oij/m. For pij → δij , all pij values < −1 become -1, all pij

values > 1 become 1, and from this point δij = (pij + 1)/2.

2.4 Fuzzy Logic and Decisions with Contention

There are now twice as many decision values for every observation as there were
numbers of classifiers. Utilizing fuzzy logic theory, T-conorms and T-norms can
be considered for fusion. The choice between T-norms and T-conorms depends
upon the risk aversion of the decision maker and the nature of the classifier (recall
that for the one-class SVM, intruders should be the most negative numbers).
Caution against false negatives requires operating in the realm of the T-norms,
creating more false alarms but missing fewer true positives. Caution against false
positives requires T-conorms, perhaps missing a few true positives but generating
fewer false alarms. Figure 1 illustrates the domain of aggregation operators.

Intersections(T-Norms) Unions(T-Conorms)Averages

0 max (0, x + y – 1) x x y min(x,y) max (x,y) x + y - x x y min(1, x + y) 1
(algebraic
product)

(bounded
product)

(algebraic
sum)

(bounded
sum)

Fig. 1: Aggregation Operators

One problem with T-norms and T-conorms is that contention within aggre-
gation is not captured. Contention refers to a vast difference of decision values
between classifiers. However, contention can be captured and considered ap-
propriately. There are numerous ways to measure contention, and one of the
simplest is to consider the difference between the max and min decision values.
If this difference exceeds a threshold, contention exists and it may be best to
choose a different aggregator or make a cautious decision.

3 Results with Masquerading Data

Experimental results involved the SEA dataset that was mentioned earlier. There
are m=26 variables and n=2500 observations in the training data. There are
l=3 subspaces creating subspaces containing 9, 9, and 8 variables respectively.
For each subspace we consider three principal components. The genetic algo-
rithm used the fitness function shown in Equation 2, roulette wheel selection,



a crossover rate of .6 and mutation rate of .01. The number of generations
= population size = 50. The best subspaces achieved the following results:
max∀πq

| ρij |= .4 ∀(i �= j). Given this subspace configuration, we utilized
LIBSVM to calculate the one-class SVM decision variables [2].
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ROC Plot Decision Rule for Each Observation (i); (t = threshold for contention)
(a) max(δij)∀j
(b) max(θij)∀j
(c) max(δij , θij)∀j
(d) if t < .5, max(δij , θij)∀j; if t ≥ .5, median (δij , θij)∀j

Fig. 2: ROC plots and associated decision rules

The decision rule was to take the maximum value unless there was contention
> .5, and in this case we take the median of all decision values. The ROC curves
shown in figure 2 illustrate the results.

4 Conclusions

This paper discusses a framework for a difficult domain of decision making: the
unsupervised, unbalanced, binary classification problem with high dimension-
ality. It is common to encounter this domain in both the medical community
and the security community. However, different risk aversion creates different



policies for decisions. This framework capitalizes on theory from multivariate
statistics, optimization, and information theory to present an approach for de-
cision making and creation of such policies. The goal of the research discussed
in this paper is to improve our ability to find synergistic combinations of classi-
fiers measured by the fuzzy ROC curve. Future work includes finding alternate
approaches for finding optimal orthogonal subspaces.
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