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Abstract. An adaptive beamforming method for ultrawide-band (UWB) array in 
the case of nearfield is proposed based on the radical basis function neural network 
(RBFNN) in this paper. The desired outputs corresponding with measured inputs for 
the nearfield impulse source are reflected into a set of training samples. Genetic 
algorithm and recursive least square algorithm are employed to determine the structure 
and the parameters of RBFNN. It can avoid the computation of an inverse matrix and 
alleviate the impact of the mutual coupling phenomenon. The experimental results also 
prove its efficiency and feasibility.  

1 Introduction 

Recently with the development of emerging ultra wideband (UWB) technology in 
noise radar, UWB positioning system and impulse-radio communication, the principle 
of space-time processing can be also applied in the design and research of the UWB 
system [1][2][3]. The common UWB beamforming method is to compensate time 
delay using a time delay-sum beamformer in UWB system. But time-delay in 
channels cannot be estimated accurately and compensated in easy. In the other hand, 
the UWB array should concerned a wide range of frequency band, and its response 
varies with frequency obviously. Moreover, many application occasions of the UWB 
pulse array cannot satisfy an ordinary farfield condition, such as in some scenarios of 
medical diagnosis appliances [3]. It is well know that dynamically adaptive 
beamformers can achieve better performance than fixed-weight beamformers when 
noise and interference are time-varying or location is unknown. Unlike usual 
monochromatic and broad electromagnetic (EM) waves, the radiated and received 
UWB signals are easy to be affected by the characteristics of propagation channels. 
One mainly problem is the mutual coupling between antennas, which should be 
considered for a class of EM waves with a UWB spectrum impinging on an antenna 
array while it is negligible in the most methods of beamforming such as linear 
constrained minimize variance (LCMV) method and the time domain method. The 
goal of this paper is to consider the adaptive realization of nearfield beamforming in 
UWB pulse array. 

Neural methods have been applied for antenna array signal processing and reveal 
a lot of advantages [4][5]. In this paper, we attempt to examine the method of the 
radical basis function neural network (RBFNN) for the adaptive beamforming of 
nearfield UWB array. The construction of the network and its learning algorithm are 
depicted in detail. For the good characteristic of neural network (NN) such as its large 
capacity, parallelism, nonlinear mapping and self-learning, RBFNN can fulfill a rapid 
implementation of beamforming and is more robust to the environment disturbance. 
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Experimental results obtained with linear equi-spacing array processing UWB pulses 
train signal help to assess the usefulness of the proposed method. 

2  Nearfield beamforming of UWB array 

The commonly used UWB signal model is Gaussian impulse waveform, which is of 
high resolution and penetration for its very short duration. We give a representation of 
generalized Gaussian pulse (GGP) which has been tested in the transmission and 
receiving experiment in the following: 
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Here E0 is the peak amplitude at the time t=t0 (usually E0=1), △T is a nominal 
duration, and a is a scaling parameter. 
 Paper [2] gives a structure of UWB array beamformer with a linear array with 
omnidirectional sensors uniformly spaced. An adjustable digital delay line or 
transverse filter is employed to obtain the compensation of time delay. Thus a beam 
can be formed in the direction of desired signal. 
 Given the radial distance , azimuth mr mθ , and elevation angle mφ  in planar 
coordinate system. Consider a beamformer processing UWB pulse signal with M 
elements and K taps attached at each element. The elements of the array are located at 
{ ( , )}m m mr θ=x 1,2,...,m M=, . The coordinate system is defined such that its origin is 
at the phase center of the array. If the signal target is located at ( , )s s sr θ=x  with 

2
s ar R λ< , where  is the largest array dimension and 2

aR λ  is the operating 
wavelength, the near-field propagation model is required and the near-field steering 
vector of the array beamformer is defined as [6]: 
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where  is the frequency, c is the propagation speed, f s sr = x and ms m sr = −x x  are 
the distances from the signal source to the phase center of the array and m-th element, 
respectively. For the incidence of an UWB EM wave formed by GGP trains, the 
representation of induced voltage included a coupling matrix  can be written as [7]: C

( ) ( , ) ( ) ( )st f t e t= +u Ca x s                                          (3) 
1( )(A T T )Z Z Z Z I −= + +C                                          (4) 

where is the theoretical response matrix with size ( , )s fa x MK L×  at incidence angle 

sx , is ultra wideband source compound with L monochromatic frequencies, ( )ts AZ  
is antenna impedance, TZ is the impedance of measurement equipment at each 
element, Z is the mutual coupling matrix. The frequency response of beamformer and 
the output y(k) can be expressed as matrix form in frequency domain: 

( , ) ( ) ( , )H
s sf f f=b x G a x                                       (5) 

1( ) ( ) ( )Hf f −=y G C u f                                            (6) 
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Here ( )mg f  is the response of each element channel.  
 Using the LCMV method, the nearfield adaptive beamformer tries to minimize 
the output power subject to some constraints. If the point number L of  is less 
than free degrees of matrix 

( , )fb x
N MK= ( )ωG , equation (5) can be treated as the L linear 

constraints. Assume  denotes the covariance matrix of input vector  
measured and A is steering matrix, the optimal solution to the constrained 
minimization problem is obtained by: 

uuR 1 ( )k−C u

1 1 1( ) ( ,H
opt sf− − −= uu uuG R A A R A b x )                                 (8) 

Theoretically, the matrix C related to nearfield position sx  could be determined if 
occupied frequency spectrum is known and a compensation matrix can be 
constructed. But in fact the C tends to vary with the changes of environment. Some 
presented compensation approaches of mutual matrix C are complicated and based on 
some approximate hypotheses. So they lack in some robustness to a certain extent. In 
following, we will examine a neural networks method for UWB signal beamforming 
over a near-field spatial region and its benefit in resisting the mutual coupling 
phenomenon. 
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3 Adaptive beamforming by Radical Basis Function Network 

Paper [8] shows analogy of spatio-temporal processing between the biological neuron 
and digital spatio-temporal neural network system. RBFNN is derived form regular 
theory and has the optimal approximation ability for complicated functions [9][10]. It 
has a faster learning speed compared to global methods, such as the MLP with BP 
rule, and only part of the input space needs to be trained.  The structure of the 
RBFNN for the beamforming of UWB array is shown in Fig.1. Assume the number of 
nodes in input layer, hidden layer and output layer are M, J and P respectively.  
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Fig.1:   The structure of a RBFNN 

Denote X jC− as the distance of input X=[x1, x2,…, xM] to the j-th center Cj=[c j1, 
cj2,…, cjL]. The output of the j-th node for the n-th sample of the hidden layer is: 

                                   2 2

1

( ) exp[ ( ) / ]
M

j n j i ji ji
i

z X C x c σ
=

= Φ − = − −∑                        (9) 

where σji is the radius of the j-th Gaussian function in the hidden layer, and cji is the 



i-th component of the j-th center. A linear layer then follows:  
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where yi is the output of i-th neuron, wij is the connect weight of the j-th hidden 
neuron to the i-th output neuron and wi0 is the threshold of the i-th output neuron. 
 The beamformers for UWB pulse array can be regarded as a complex nonlinear 
system with delay. For UWB nearfield array described in above, the input data is 
given as GGP signal train and transformed into domain by FFT. Select the several 
signal source located in sx  uniformly distributed in the interested nearfield region. 
Firstly we should know the desired response of beamformer over the selected position. 
The ( , ) ( , )s d sf f=b x b x  is the dedicated response of UWB array without distortion 
in main bandwidth of UWB signal. Then from equation (5) we can obtain the . 
For the input samples, the desired output can be obtained from equation (6)(7), which 
makes up of the training sample set. 

( )G f

As we all know, the determination of the structure of the network, that is, the 
number of hidden neurons M is a headachy task in the training. A most often used 
approach is an experiential try. Take the error function in (12) as the cost function, 
here we use genetic algorithm (GA)[11] to determine M. Assume the incidence angle 
varies from -90°to + 90, and the training data are obtained by a sampling spaced d. 
Input them into the network, such a learning algorithm follows: 1. Firstly a random 
population is generated where each individual represent a network with different M; 2. 
For each network that is corresponding to an individual, a self-organized clustering 
learning method is used to select the centers of the basis function, and the variance is 
selected by a gradient descent algorithm. For the weight of output layer, a recurrent 
least square (RLS) is used. Let Wk(n)=[Wk0(n),.., WkM(n)]T (k=1,..,N), Z(n)=[z1(n),.., 
zM(n)]T, then the K-th output is: 
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Define such a weighted error function J: 
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where λ is the weighted forget parameter which smoothes the effect of the foregoing 
samples little by little. Let , the RLS algorithm is as follows:  )(ˆ)( 1 nRnP −=
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Train the network using (13), obtained J is use to define the fitness function of the 
population F=1/J. 3. Compute all the fitness functions, and a selection is executed. 4. 
Perform the crossover and mutation on the population. 5. Judge the stop condition, 
when the iteration number exceeds a given I or the obtained J is small enough, stop, 



else go to step 2. When the iteration process is completed, all the parameters are 
determined, so we can use the network in the beamforming.  

4 Experiments and Preliminary Results 

Fig.4: Convergence curves for
different training samples 

We demonstrate the feasibility of our constructed RBFNN in UWB array 
beamforming by applying it to a uniform linear array with element number M=11. 

The UWB signal being used in the experiments is a monocycle of GGP with nominal 
duration time , sample 
period T

2T∆ = ns
s ＝ 100ps. The time 

variation of the GGP with different 
values of α is plotted in Fig.2.  
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Fig.2: UWB monocyle
waveform of GGP 

The system is trained to steer 
its beams toward desired UWB 
signals coming from the angle 300. 
The snap number is 200. In the 
RBFNN, the training samples of 
the network are obtained by a 
uniform sampling of θ from -90
°to + 90°spaced  s°. For the 
obtained network which has the 
optimal structure, Fig.4 gives 
variation of error with the iteration 
times in different s, from which we can see that more training samples we use, more 
fast of the convergence of the network. The performance of our method is also related 
with the parameters of the genetic algorithm, such as the probabilities of crossover pc 
and mutation pm, and the given number of iterations. Table 1 gives the average 
sidelobe suppression effect of beamformer with different pc and pm. Comparing with 
LCMV that neglect the mutual coupling compensation, the RBFNN method can 
improve the robustness resisting the mutual coupling phenomenon. From it, we can 



see that the performance of RBFNN beamformer is the highest when pc=0.8 and 
pm=0.2. 

Sidelobe suppression Iterations pc pm

LCMV RBFNN 
1000 
1000 
1000 
1000 

0.9 
0.8 
0.7 
0.6 

0.1 
    0.2 

0.3 
0.4 

-10.3db 
-12.05db 
-11.4db 
-10.9db 

-11.5db 
-14.7db 
-13.1db 
-11.8db 

Table 1: The SINR of FIR and RBFNN beamformer with different pc and pm. 

5 Conclusions 

Preliminary simulation, experimental results for adaptive nearfield UWB array 
beamforming based on radical basis function neural network is examined in the paper. 
It can be inferable that neural network approach for nearfield beamforming of UWB 
array is helpful to reduce the influence of mutual coupling existing the UWB antennas 
array. The feasibility of this method is verified. But more improvement remains to do 
in further work. 
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