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Abstract. Since training of a classifier takes time, usually some cri-
terion other than the recognition rate is used for feature selection. This
may, however, leads to deteriorating the generalization ability by feature
selection. To overcome this problem, in this paper, we propose modified
backward feature selection by cross validation. Initially, we determine
the candidate set which consists of the features that do not deteriorate
the generalization ability, if each is deleted from the initial set of features.
If the generalization ability is not deteriorated even if all the candidate
features are deleted, we terminate the algorithm. Otherwise, we delete
by backward deletion the candidate feature that improves the general-
ization ability the most, and determine the candidate set that is a subset
of the current candidate set. We iterate the above procedure until the
candidate set is empty. We evaluate our method using support vector
machines for some benchmark data sets and show that many features are
deleted without deteriorating the generalization ability.

1 Introduction

Feature selection is one of the important steps to construct a pattern classi-
fication system with high generalization ability [1, pp. 205–247]. Although
support vector machines are robust for a large number of input features, by
feature selection we can improve their generalization ability.
The feature selection methods for support vector machines are classified into

two: backward or forward feature selection based on some selection criterion
[2, 3, 4]; and SVM-based feature selection, in which a feature selection criterion
is added to the objective function [5, 6, 7, 8, 9] or forward feature selection is
done by changing the margin parameter [10].
The selection criterion used in the literature is, except for some cases [2, 3],

the margin [4, 11, 12, 8]. In addition, in most cases, linear support vector
machines are used. But, since we want to reduce features without deteriorating
the generalization ability, we need to check it after feature selection.
In this paper we discuss reducing features by modified backward feature



selection combined with cross validation. To accurately delete the unnecessary
features we use as a selection criterion the generalization ability estimated by
cross validation. In contrast to the conventional backward feature selection
method, which deletes one feature that has the highest selection criterion, if
deleted, at a time, we simultaneously delete the features with the generalization
ability, if deleted, higher than or equal to that with all the features. If too many
features are deleted, we backtrack and delete one feature that has the highest
generalization ability, if deleted, and repeat the above procedure until there is
no feature to be deleted.
In Section 2, we discuss the modified backward feature selection method

and in Section 3, using some benchmark data sets we demonstrate that the
features are deleted without deteriorating the generalization ability.

2 Modified Backward Feature Selection

Usually we select a feature selection criterion other than the recognition rate,
because it is time consuming to evaluate the recognition rate. But if the number
of training data is small, the recognition rate can be used as a feature selection
criterion.1

In the following we discuss modified backward feature selection using the
generalization ability estimated by cross validation as a selection criterion.
In the backward feature selection, starting from the initial set of features

we temporally delete each feature and calculate the value of selection criterion
and delete the feature with the highest value of the selection criterion from the
set. In the modified backward selection, we delete all the features that improve
the generalization ability, if deleted. In addition, if the generalization ability is
decreased if a feature is deleted, we consider that the feature is indispensable
for classification and we exclude it from the candidate of deletion.
Let the initial set of selected features be Fm, wherem is the number of input

variables, and the recognition rate of the validation set by cross validation be
Rm.
We delete the ith (i = 1, . . . , m) feature temporally from Fm and estimate

the generalization ability by cross validation. Let the recognition rate of the
validation set beRm

i . We iterate this procedure for all i (i = 1, . . . , m). Then we
rank features according to Rm

i . We call this process backward feature ranking.
To speed up backward feature ranking, we consider that the features that

satisfy
Rm

i < Rm (1)

are indispensable for classification and thus they cannot be deleted.
Thus, we set the set of features that are candidates for deletion and also for

further feature ranking

Sm = {i |Rm
i ≥ Rm, i ∈ {1, . . . , m}}. (2)

1Professor N. Kasabov’s lecture at Kobe University on June 1, 2004 showed usefulness of
this criterion.



We call Sm candidate set. If Sm is empty, we consider that there is no feature
to delete and stop deleting the feature. If only one feature is included, we
consider that this feature can be deleted and stop deleting the features.
Assume that Sm includes more than one feature. Then, we set

F k = Fm − Sm (3)

where k = m − |Sm| and |Sm| denotes the number of elements in Sm. If

Rk ≥ Rm, (4)

we consider that F k is the reduced set of features that realize the generalization
ability the same with or higher than that with the initial set of features and
stop deleting the features.
If (4) is not satisfied, we restore F k to Fm and delete argmaxi∈Sm Rm

i from
Fm:

Fm−1 = Fm − {arg max
i∈Sm

Rm
i }. (5)

We call this process backward feature deletion. According to the assumption,
further feature deletion is possible only for the features in Sm−{argmaxi∈Sm Rm

i }.
Thus we set the candidate set Sm−1:

Sm−1 = {i |Rm−1
i ≥ Rm, i ∈ Sm − {arg max

i∈Sm
Rm

i }}. (6)

We iterate the above procedure for the feature set Fm−1 and the candidate set
Sm−1 until the candidate set is empty.
The advantages of our method are as follows:

1. Features can be deleted without deteriorating the generalization ability.

2. If all the features in the candidate set are deleted, the computation time
is reduced considerably compared to the conventional backward feature
selection method.

3. By determining the candidate set using the current candidate set, the
number of steps for backward feature deletion is reduced.

3 Performance Evaluation

We evaluated the proposed method using the data sets listed in Table 1. The
first four data sets were used in [1, pp. 205–237]. The diagnosis data set is for
classifying skin image data into one of four classes.
Since the generalization abilities of L1 and L2 support vector machines do

not differ very much, we used L1 support vector machines for the first four
data sets and the L2 support vector machines for the diagnosis data set. Since
optimal features change as the kernels are changed. We first determine the
optimal kernels for each classification problem by 5-fold cross validation and for



Table 1: Benchmark data specification

Data Inputs Classes Training data Test data

Iris 4 3 75 75

Numeral 12 10 810 820

Thyroid 21 3 3772 3428

Blood cell 13 12 3097 3100

Diagnosis 45 4 498 1200

the determined kernels we performed feature selection. Namely, we estimated
the generalization ability by 5-fold cross validation for a given kernel changing
the value of C.
Table 2 shows the results. The “Deleted” column lists the features deleted

according to the algorithm, and “Validation” and “Test” columns show the
recognition rates of the validation sets and test data sets, respectively. If the
recognition rate of the training data is not 100%, it is shown in the bracket.
The column “C” lists the value of C determined by cross validation for the
training data set. For the iris and numeral data sets we used a polynomial
kernels with degree 2, for the blood cell and thyroid data sets, polynomial
kernels with degree 4, and for the diagnosis data set, linear kernels.
For the numeral, thyroid, and diagnosis data sets, by deleting all the features

in the candidate set from the initial set, the recognition rate for the validation
data was higher than or equal to that of the initial set. Thus, the features in
the candidate set were all deletable. The recognition rates of the test data sets
with the deleted features were higher than those with the initial sets of features
for thyroid and numeral data sets and comparable for the diagnosis data set.
For the thyroid data set, we could delete 18 features from 21 features and for
the diagnosis data set, 25 features out of 45.
For the iris data set, the candidate set S4 included all four features. Thus,

we deleted the two features with higher recognition rates, i.e., the second and
third features. But since the recognition rate of the validation set was lower
than that with all the features, we backtracked to backward feature selection;
since the second and third features had the same recognition rate for the vali-
dation set, we deleted the second and third features separately. The resulting
recognition rates were higher than that with all the features.
For the blood cell data, deletion of the candidate set S13 from the initial

set of features resulted in degradation of the generalization ability. Thus, the
first feature, which has the maximum generalization ability, if deleted, was
deleted by backward feature deletion. The candidate set S12 was then calcu-
lated as {6, 8, 9, 10, 13}. Since deletion of all the features in the candidate set
did not deteriorate the generalization ability, deletion was terminated. The



Table 2: Feature selection by cross validation. The numerals in the parentheses
in the “Deleted” column list the remaining features

Data Deleted C Validation (%) Test (%)

Iris None 5000 94.67 93.33

2, 3 50 93.33 (98.00) 97.33 (98.67)

2 10 96.00 (97.33) 97.33 (98.67)

3 500 96.00 (99.00) 96.00 (98.67)

Numeral None 1 99.51 (99.97) 99.63

3, 4, 10, 12 1 99.51 (99.94) 99.76

Blood cell None 1 93.77 (96.23) 93.23 (96.51)

(4, 7, 12) 10 90.73 (94.54) 89.87 (93.83)

1, 6, 8, 9, 10, 13 1 94.25 (96.00) 92.45 (95.93)

Thyroid None 105 97.96 97.93

(3, 8, 17) 104 98.52 (99.76) 98.48 (99.81)

Diagnosis None 1 71.69 (79.62) 73.17 (78.71)

25 features 1 71.89 (78.66) 73.08 (78.38)

resulting recognition rate of the test data was slightly lower than that with all
the features.
In [1, pp. 205–237], exception ratios that are defined by overlapping regions

of fuzzy regions are used for selection criteria. Some of the features selected
by the exception ratios are included in the features selected by the proposed
method. But there is no data set whose selected features are the same. The
recognition rates of the iris, numeral, and blood cell test data sets were com-
parable with or better than those by multilayer neural networks and fuzzy
systems. But, that of the thyroid test data set was inferior to that by the fuzzy
min-max classifiers, which showed the best recognition rate of 99.42% with all
21 features [1, pp. 177–184].

4 Conclusions

In this paper, we proposed the modified backward feature selection method by
cross validation. First, we determine the candidate set that does not deterio-
rate the generalization ability, if one feature in the set is deleted. Then if the
generalization ability is not deteriorated if all the features in the candidate set
of features are deleted, we stop deleting the features. Otherwise, we delete one



feature in the candidate set from the set of features and repeat the above proce-
dure. We evaluated our method using support vector machines and showed that
many features can be deleted without deteriorating the generalization ability.
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