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Abstract. A large variety of supervised or unsupervised learning algo-

rithms is based on a metric or similarity measure of the patterns in input

space. Often, the standard euclidean metric is not sufficient and much

more efficient and powerful approximators can be constructed based on

more complex similarity calculations such as kernels or learning metrics.

This procedure is benefitial for data in euclidean space and it is crucial for

more complex data structures such as occur in bioinformatics or natural

language processing. In this article, we review similarity based methods

and its combination with similarity measures which go beyond the stan-

dard Euclidian metric. Thereby, we focus on general unifying principles of

learning using non-standard metrics and metric adaptation.

1 Introduction

The key ingredient of popular machine learning methods such as support vec-
tor machines (SVM), learning vector quantization (LVQ), self-organizing maps
(SOM), or k-nearest neighbor classification is a similarity measure of the data in
the input space. It allows to judge the similarity of the data to given representa-
tive points which determine the classification, i.e. prototypes, support vectors, or
stored training patterns. Similarity based classification models have the advan-
tage that their behavior is often sparse and simple, since the output of a classifier
is determined by the similarity of a given data point to (usually few) prototyp-
ical cases. Typical learning rules (e.g. SOM, LVQ, or kernel-Adatron) can be
motivated by intuitive principles such as Hebbian learning, possibly extended by
a winner-takes-all dynamics and neighborhood cooperativeness.

However, the choice of the metric for these methods is directly connected to
the representation of data and it crucially influences the efficiency, accuracy, and
generalization ability of the results. Depending on the respective application,
different aims need to be fulfilled: the similarity measure should possess the flex-
ibility to capture the complexity inherent in the learning task; a powerful metric
allows for sparse models and a natural representation of data since complex de-
cision borders and data preprocessing are part of the similarity measure. At the
same time, the similarity measure should be simple enough such that an efficient
computation and good generalization ability can be guaranteed; sparse metrics
which focus on relevant information allow to reduce the influence of noise and
uncertainty in the data set.

Naturally, the choice of an appropriate metric depends on the given learn-
ing task and it is often difficult and time consuming to find the right similarity
measure for a concrete problem. However, several factors influence the spec-
trum: learning models put constraints on the metric choice such as specific
requirements, e.g. positive definiteness. The training data account for further



design criteria, e.g. its amount of noise, dimensionality, inherent invariances, or
its specific possibly non-Euclidian format. Thus, it is worth considering general
demands and possibilities to combine models, data types, and metric choices
since this triple determines the general framework in which concrete realizations
can take place. We will focus on this aspect in the first part of the article.

In the second part of this article, we will emphasize possibilities which allow
an automatic adaptation of the metric based on additional information given
within the concrete learning task. This idea of learning metrics is particularly
interesting since it allows an automatic choice of metric parameters which fit the
specific situation based on data dependent information. Several realizations of
this general approach have been proposed in the literature, starting from simple
pruning mechanisms up to metrics such as the Fisher kernel which incorporate a
statistical model of the given data. From an abstract point of view, the different
models of learning metrics automatically include metric sparsity and flexibility
within an exact mathematical learning objective for the given task. This consti-
tutes a step towards automatic model optimization for metric-based learning.

2 Models

We consider supervised and unsupervised classification and clustering models
which compute an output based on some form of similarity measure. Thereby,
the term similarity measure is understood in a broad sense and covers metrics
and kernels as specific cases.

2.1 Unsupervised models

Unsupervised similarity based learning models aim at data clustering, represen-
tation, and visualization. Thereby, the objectives might be diverse and depend
on the problem at hand. There exist a lot of different models like EM approaches
for standard or fuzzy k-means [4], generative topographic mapping (GTM) [5],
kernelized topographic mapping [81], ISOMAP, ISODATA, multi-dimensional
scaling, neural gas [57] or self-organizing maps [45], to name just a few. In our
context, SOM can serve as an excellent example since a variety of typical tech-
niques and extensions to more complex metrics exists. Therefore, first, we focus
on the SOM as proposed by Kohonen which constitutes a very popular approach
with successful applications in different areas [45]. In the last paragraph of this
section we shortly review the alternative models.

2.1.1 Standard SOM

For standard SOM, codebook vectors or prototypes �wr in data space are arranged

on a regular lattice, often given by a two-dimensional rectangular topology. A
new data point �x is mapped to the winning prototype �wr for which d(�wr , �x)
is minimum, whereby d denotes the standard Euclidian metric. Learning often
takes place in Hebb style by adapting the weights of the winner and its neigh-

borhood into the direction of the given training data. Thus, for standard SOM,
the relevant aspects concerning the metric and the corresponding data space are
threefold:



1. the Euclidian metric d is used to determine the winner and, consequently,
the output of the map,

2. representative prototypes are elements in the vector space spanned by

the input patterns,

3. adaptation of prototypes takes place into the direction of input patterns;

this direction can be seen as the derivative of the squared Euclidian metric
with respect to the prototypes.

Thus, several points are to be considered if SOM is extended to non-standard
metrics.

2.1.2 Choice of the metric in SOMs

The Euclidian metric d can be extended to a more complex similarity measure
which is better adapted to the considered problem. This can be performed
explicitly, substituting d e.g. by a similarity measure for more complex structures
(e.g. a metric for graphs [23] or microarray profiles [46]). Although there is in
principle no restriction on the function d in this procedure, d is usually chosen
as a symmetric, positive semidefinite measure in these cases. Then, the winner
can be directly computed using d.

Alternatively, the metric can be changed implicitly by an extension of the
dynamics of winner computation. This method has been proposed for temporal,
sequential, or more general recursive data such as trees and graph structures:
the winner computation takes place in the context set by previous computation
steps, thus substituting d by a recursive distance computation. The temporal
Kohonen map and the recursive SOM constitute early proposals for time series,
where the distance in time step t is given by the average of the current distance
and the distance in the previous time step, leading to a leaky integration over
the whole sequence [8, 48]. More powerful models have recently been proposed
which use a richer representation of the context [25, 26, 73, 87]. First approaches
to explicitly characterize the similarity measure which arises from this recursive
dynamics can be found in [29].

2.1.3 Choice of the prototypes in SOMs

Prototype representation and adaptation are often related and can be based on
different training schemes for SOM. The original SOM learning rule has been
proposed as a biologically plausible heuristic and an exact mathematical investi-
gation is difficult [10]. An elegant general view of SOM training can be derived
for a variant of the original SOM for which an intuitive energy function exists
also in the continuous case [36]. Standard SOM training can be seen as an
(approximate) stochastic gradient descent of this cost function. Naturally, alter-
native optimization schemes can be derived. A very popular one is realized by
the batch learning rule for SOM, which iteratively determines the assignment of
data points to closest prototypes and the location of prototypes as the centre
of gravity of the data points weighted by the neighborhood degree of their re-
spective winner. As shown in [37], this procedure results as limit case of an EM
minimization scheme. Prototype representation and adaptation can be trans-
ferred to more general metrics based on these principles: from an abstract point



of view, SOM training for general metrics can be seen as optimization of the
underlying cost function where the standard Euclidian metric d is substituted
by an (either directly or recursively computed) non-standard distance measure.
Taking the derivative of this term yields online SOM training for non-standard
metrics, an EM approach allows to derive batch versions.

However, in practice, this principle often faces severe problems such that
specific modifications are necessary. Online training can be derived in this way
if the corresponding similarity measure is differentiable and data are embedded in
a real-vector space (see e.g. [2]). Still, the distance computation might be costly
depending on the form of d in particular for high-dimensional data. In addition,
an optimization by means of a simple gradient descent might face numerical
problems for more complex similarity measures such as e.g. recursively computed
distances. For this case, the problem of long-term dependencies which is well
known from supervised recurrent networks occurs and, usually, approximations
are considered instead, as pointed out in [28].

If data are discrete such as graphs, trees, or sequences which are compared
by an appropriate distance measure such as the edit distance, the derivatives
do not exist. In addition, data are not embedded in a real-vector space such
that a smooth adaptation of prototypes is not possible. In such cases, it is
necessary to substitute the derivatives of the metric and prototype adaptation.
One possibility is to approximate derivatives and smooth adaptations for online
learning by small discrete steps, such as proposed for graph structures based
on the edit distance in [23]. Alternatively, one can restrict to the discrete and
usually rough space given by the training points itself. Batch learning can be
performed in this space substituting the mean value by the median, i.e. setting
the prototypes as the training patterns which minimize the respective function
of the M-step, as proposed in [46]. This way, the SOM can be used for domains
where only pairwise distances are computed such as protein sequences which are
compared by their homology [46] or web sites which are clustered based on usage
information such as log files [64]. The procedure has the additional benefit that
only pairwise distances of the given data points are necessary. Thus, distances
need to be computed only once and also computationally complex metrics can
be considered. Moreover, the method can also be used if no closed formula for
d, but only the distance matrix is available.

Note that the specific choices how to realize cost function minimization in
the concrete scenarios have consequences on the potential application area: the
realizations differ in the fact whether the similarity measure needs to fulfill addi-
tional criteria such as differentiability or not, whether prototypes are represented
in terms of data points or a surrounding continuous space must exist for pro-
totype representation, whether a distance matrix is sufficient or the similarity
measure is computed afresh after each adaptation step by means of a closed
form. These aspects have immediate consequences on the efficiency, flexibility,
and applicability of the algorithm for concrete settings.

2.1.4 Alternative models

In analogy to SOM, alternative unsupervised learning schemes incorporating
non-standard metrics have been proposed. Naturally, extensions of SOM to
problem adapted topologies such as growing topologies, tree structures, or non-



Euclidian lattices can be readily combined with non-standard metrics [12, 17, 65,
83]. These extensions are particularly relevant for non-standard metrics since
the data topology is usually not Euclidian in these cases.

However, most qualitatively different models of self-organization using non
standard metrics arise from a different objective of training. The quantization
error is minimized by EM approaches for standard k-means, or, allowing soft
assignments, classical fuzzy-k-means [4]. These algorithms have been generalized
to various more general metrics to achieve a better representation of data or an
alternative shape of clusters, see e.g. [38]. Alternative very powerful formulations
model the SOM by probabilistic mixture models, e.g. the generative topographic
map [5] or the approach proposed in [37]. These formulations are very flexible due
to the generic formalization and they allow to incorporate more general metrics
by substituting the statistical components for data or noise which are classically
Gaussian components by more complex models, e.g. a member of the exponential
family or a hidden Markov model [37, 61, 76]. The form of the components
thereby depends on the form of the data which might be discrete, continuous,
structured, or even of mixed form [50]. Further vector quantization approaches
aim at optimum information presentation or information transfer, such as the
(also kernelized) model proposed in [81] or the approach [55] which has been
extended to general proximity data in [22]. Finally, a variety of algorithms
is based on the objective to find an optimum visualization of given data in
the plane, such as ISOMAP, ISODATA, multidimensional scaling, or variations
thereof [6, 52, 89]. Here, specific emphasize is laid on metrics which mirror the
intrinsic Riemannian metric of the considered data manifold which is usually a
low-dimensional subset of the surrounding Euclidian space.

For these models, similar design choices as for the classical SOM can be con-
sidered, including principled model considerations such as the representation and
adaptation of prototypes, and concrete issues caused by the available training
data such as the form of the metric and its computational complexity.

2.2 Supervised models

Unlike unsupervised learning, the objective of supervised classification models
is error minimization. Thus, a natural cost function, the number of misclassi-
fications, exists. Nevertheless, several metric-based classification models do not
explicitly optimize this cost function, but they are based on intuitive heuristics.

2.2.1 k-nearest neighbor

k-nearest neighbor or instance based learning simply stores the available training
data and determines its output for a new data point based on the k closest
training pattern. Thus, a transfer to general metrics can easily be achieved by a
substitution of the metric by a non-standard version. However, depending on the
number of patterns, this approach can be very inefficient and its generalization
ability is not optimum [13].

2.2.2 Learning vector quantization

LVQ offers an alternative which adapts few prototypes based on a given set of
training data [45]. Basic LVQ is given by a set of prototypes �wr together with



class information. An input �x is mapped to the class of the winner, i.e. the
prototype �wr with smallest distance d(�wr, �x). Standard LVQ learning moves
the respective winner into the direction of the considered pattern �x or into the
opposite direction, depending on the fact whether the classification is correct.
Thus, LVQ shares the aspects of SOM which are relevant for a more general
metric: besides a choice of the metric, the representation and adaptation of the
prototypes is to be defined.

LVQ itself does not possess a cost function in the continuous case, thus
adaptations of original LVQ to more general metrics are often based on heuristics
as proposed e.g. in [27] for recursive data. Usually, the metric d is substituted
by a problem specific version, but adaptation of the prototypes takes place as
in standard LVQ using Hebbian learning. Various modifications of LVQ based
on a cost function have been proposed in the literature [66, 68]. Interestingly,
though error minimization is related to the latter model, the objective is large
margin optimization, i.e. structural risk minimization comparable to SVM [30].
For these cost functions, an integration of more general differentiable metrics is
possible and training can take place as a stochastic gradient descent as shown
in [32]. If the metrics can be interpreted as a kernelized version of the Euclidian
metric, e.g. −d is symmetric and conditionally positive definite, dimensionality
independent large margin bounds which have been derived for LVQ also hold
for the generalized version and good generalization ability can be guaranteed
[32, 30]. This fact is particularly important for non-standard metrics since often,
a high dimensional and only sparsely covered space is considered. However, a
batch approach to minimize a given cost function of LVQ with explicit solution
or a formulation of LVQ type algorithms for discrete data structures have not
yet been proposed in the literature.

2.2.3 SVM

SVM is usually not introduced as metric based approach; however, its dual
formulation in terms of kernel values and adaptation schemes such as kernel
adaptron share important aspects of distance based learning: (usually sparse)
solutions can be obtained based on a given kernel matrix of the data points.
Therefore, the design of appropriate similarity measures, i.e. kernels for given
data structures is of particular importance for SVM and ideas of kernel and
metric design are closely related [78]. Moreover, the SVM principle gives rise
to various learning algorithms which tackle problems different from crisp classi-
fication such as classification given fuzzy memberships [40] or the unsupervised
task of approximating the support of an unknown data distribution [14].

3 Metrics

A variety of different metrics which go beyond the standard Euclidian metric
have been proposed in the literature. Thereby, the approaches differ with re-
spect to the considered data types — real vectors or more complex structures,
e.g. graphs or sequences —, the intended semantic meaning — e.g. incorporating
invariances, additional information, or statistical properties of data —, and the
efficiency of computation — ranging from simple summation up to methods which
require dynamic programming or optimization. Naturally, the metric has to be



chosen in such a way, that it fits the given data structure, but also the regulari-
ties within the data and the noise model [16]. Here, we propose a taxonomy of
metric designs based on the given data structures.

3.1 Discrete values

Often, only single values, e.g. elements of a distance matrix, are available and
the classification takes place based on the given distance matrix. Usually, the
difficulty to deal with such situations does not lie in the choice of the metric (since
the matrix is available) but the design of appropriate algorithms which can work
with this limited information. Several approaches have been proposed based on
different optimization principles in the unsupervised scenario [21, 69]. Problems
might arise for partial information where missing entries have to be restored,
see e.g. [79], or if mixed data which contain discrete as well as continuous values
are considered [50]. A further interesting line of research considers discrete data
given as contingency tables, e.g. survey data [11]. Here, similarity measures
compare appropriately scaled rows or columns from the complete disjunctive
table or summations thereof such as Burt tables. For the supervised case an
adaptive scheme is proposed for nominal data using the value difference metric
[9].

3.2 Real vectors

Several proposed metrics deal with real vectors in the standard Euclidian space,
but they try to incorporate appropriate data characteristics or invariances into
the design to achieve a better accuracy. This idea includes lp (Minkowski) norms
with p �= 2 [16], reduction of the dimensionality [14], or feature selection as sum-
marized e.g. in [24]. Further popular methods rely on an appropriate weighting
of dimensionalities or a full (possibly local) matrix, such as a variation of the
Mahalanobis distance which takes the correlation of data dimensions into ac-
count [13, 20, 33, 38, 74]. For two-dimensional settings, elements can possibly
be interpreted as a complex number, e.g. amplitude and phase of spectra. For
such data, complex valued networks can be used [35]. More complex invariances
can be integrated into the setting by requiring invariance e.g. with respect to cer-
tain transformations such as realized by the tangent distance, for example [88].
Finally, classical kernels such as the RBF kernel, or ANOVA kernels provide
similarity measures for standard vectors which are related to Gaussian shaped
contours or higher order correlations [67].

3.3 Manifolds

Often, real vectors are elements of a (low dimensional) submanifold of the sur-
rounding space. In such cases, the Euclidian metric or another global metric does
not fit the local structure of the data manifold, but the inherent Riemannian
metric should be used [58]. This problem occurs, e.g. when projecting high
dimensional data onto lower dimensions. Several different metrics have been
proposed in this context which are based on the assumption that the local dis-
tances of neighbors can be computed in the standard way, however, the global
distances need to be computed along the graph which is spanned by the data



points. Several different possibilities to compute an appropriate metric, based
e.g. on the shortest path or an average short connection have been proposed
[3, 51, 53].

The situation becomes more complex, if only specific directions within the
manifold are relevant, e.g. those directions which influence the output classi-
fication. In this case, the Fisher information matrix of the class distribution
given input x can be used to model the local similarity; an extension to the
whole manifold can be done in an exact way using path integrals, or by efficient
approximations thereof [62].

3.4 Sequences

Sequences occur naturally in several domains such as speech, text, DNA- and
protein sequences, temporal data, or spikes [7]. They might be given as vectors
of fixed dimensionality in a real-vector space. However, due to the spatial struc-
ture, correlations of neighbored points and the principled shape are of partic-
ular importance when assessing similarity. Correspondingly, specific similarity
measures which take this fact into account have been proposed: the locality
improved kernel weights the similarity of local correlations of given sequences
[31, 72]. Correlation coefficients focus on the shape of the sequences rather than
the amplitude [59, 60]. For spike sequences, the distance of the spike times
between the two candidates can be extended to a similarity measure [7]. The
general form of the data is also emphasized by a treatment of the sequence as
a function as proposed e.g. in [63]. In particular, a functional interpretation of
a given sequence can also deal with sequences which are sampled in a different
way. Note that sequences are embedded in a real-vector space in these cases and
smooth online adaptation of prototypes is possible.

For general sequences with different length, several mostly discrete similarity
measures have been proposed. Often, the similarity is based on an alignment
of the sequences and a corresponding cost function, e.g. the edit distance or
some weighted version thereof [34, 46]. This setting is usually tackled in a batch
way, referring to only the distance matrix of the training pattern. However, a
smooth (so computationally demanding) adaptation of prototypes is also possi-
ble as demonstrated in [71]: the similarity of sequences is determined by dynamic
programming, and adaptation is performed on the respective warping path in
the standard Hebb way. An alternative similarity measure for sequences relies
on common substructures of two inputs, i.e. the number of contiguous or non-
contiguos substrings which two inputs have in common. Different realizations
thereof have been proposed together with efficient computation schemes based
on dynamic programming or suffix trees [18, 54, 56]. Still, the methods are quite
demanding and usually only applied to compute the relevant part of the distance
matrix in batch algorithms.

A quite general alternative to the comparison of subparts of sequences is
offered by similarity measures derived from a statistical model by means of the
Fisher information, as introduced in [39]. This way, hidden Markov models or
alternative statistical generators yield natural similarities. Note that these two
principles are not disjoint but substring methods can be seen as a special case
of metrics based on a probabilistic model as shown in [85].



3.5 Trees and graphs

For more general structures such as trees or graph structures, the computational
burden to compute discriminative metrics increases [19], however the principled
ideas of metric design transfer from the more simple case of vectors or sequences.
Trees are often rooted and possess a natural processing order, such that specific
kernels e.g. stemming from natural language parsing or focussing on subtrees can
readily be defined [75, 82, 86]. Graph kernels can be based on their similarity if
restricting to contained paths [42, 47]. This similarity measure can be computed
efficiently by means of matrix exponentiation and the Laplacian. Alternatively,
discrete comparisons of given graphs using the edit distance or the generalized
median have been proposed [23, 41].

4 Metric adaptation

Methods which automatically adapt the metric based on the given learning task
are particularly interesting since they allow to automate the model selection
process. Thereby, a flexible metric should be tuned in such a way that the
parameters fit the regularities of the data set without adapting to noise and
outliers.

4.1 Learning metric parameters

Several approaches deal with metrics the form of which is fixed, e.g. Mahalanobis
distance, but the metric includes real valued parameters which are adapted based
on general optimization criteria. This principle is used e.g. in fuzzy clustering,
where metric parameters are chosen as optima of the quantization error [38]. For
supervised LVQ, relevance learning has been introduced in [33]. Thereby, rele-
vance parameters which weight the data dimensions are included in the metric
and adapted based on the objective function of generalized LVQ. Interestingly,
this method allows a much better accuracy on the training set without decreas-
ing the generalization ability of the approach since it remains a large margin
optimization scheme [30]. It should be mentioned that an appropriate metric
which achieves a good separation of classes allows to train subsequent nearest
neighbor classifiers based on very few examples as demonstrated in [15].

Alternative objectives of metric optimization are due to information theoretic
learning [77] or regression models [90]. In the first case the metric is adapted ac-
cording to the increase of the mutual information or information energy between
data and class information [1, 84] wheras in the latter one the optimization of
the regression model determines the metric adaptation [90].

4.2 Learning the metric form

Naturally, there exists a smooth transition between learning metric parameters
and learning the metric form. Relevance factors, for example, allow to select
features and, consequently, to change the representation of data, i.e. the metrics
in a principled form. Alternatively, a variety of direct feature selection and
feature creation schemes have been proposed, see e.g. [24, 80].



Several proposals fit a statistical model to the data and derive a metric
based on the generative model. Thereby, the form of the metric is determined
by the form of the statistical model. The Fisher kernel as proposed in [39]
constitutes a popular example of this approach. A statistical model, often a
hidden Markov model, is fit to the given training data and adapts to statistically
relevant aspects of the data. These aspects serve for the differentiation of data
points for classification when comparing two data points by means of the Fisher
kernel. An alternative approach has been proposed for unsupervised learning in
[44, 43, 70]. Here, auxiliary information guides the similarity measure and only
those aspects of data are monitored which have an influence on given auxiliary
information. From a technical point of view, this learning metrics principle is
realized by using the Fisher information of a generative model which describes
the dependency of the auxiliary information on the input data.

These principles allow a very flexible adaptation of the metric based on gen-
eral principles. The opposite point of view is taken in the approach [49], where
only the kernel matrix for given data is adapted. This approach is interesting
when training as well as (unlabeled) test data are available and a similarity mea-
sure which mimics a potential labeling should be inferred for the test data. In
[49], the problem is solved by determining the matrix such that the classifica-
tion error of the training set is minimum and, to avoid overfitting, the matrix is
regularized to achieve good generalization performance.

5 Discussion

Classification performance for a given task strongly depends on the chosen model,
the used metric type and related parameters. We reviewed in the contribution
approaches dealing with adequate, possibly non-standard, metrics for data repre-
sentation and classifcication. We emphasized that the choice of the metric must
fit the used model. However, finding an apropriate metric for the given task is
still a difficult problem. A very interesting possibility in this line is an automatic
learning of the metric within the given task. In this tutorial we have summa-
rized recent approaches to optimize metrics within a given frame work (metric
type) based on different objectives such as the classification error, information
theoretic measures etc.
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