
Synergies between

Evolutionary and Neural Computation

Christian Igel1 and Bernhard Sendhoff2

1- Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

2- Honda Research Institute Europe GmbH, Germany

Abstract. Evolutionary and neural computation share the same philos-
ophy to use biological information processing for the solution of technical
problems. Besides this important but rather abstract common foundation,
there have also been many successful combinations of both methods for
solving problems as applied as the design of turbomachinery components.
In this paper, we will introduce evolutionary algorithms primarily for a
“neural” audience and demonstrate their usefulness for neural computa-
tion. Furthermore, we will introduce a list of some more recent trends in
combining evolutionary and neural computation, that will show that syn-
ergies between the two fields go beyond the typically quoted example of
topology optimisation of neural networks. We strive to increase the aware-
ness for these trends in the neural computation community and spark some
interest in one or the other of the shown directions.

1 Introduction

Artificial evolutionary and neural systems have a long history, which in many
respects resembles each other. In their beginnings, they were both met with con-
siderable scepticism from both the biological as well as the technological world.
During their maturation both fields met a couple of times, but not as often
as one might expect bearing in mind that their philosophy to extract princi-
ples of biological information processing and apply it to technical systems is so
similar. Although not directly aimed at the formation of neural systems, the
design of intelligent automata was among the earliest applications of evolution-
ary algorithms (EAs) and may be traced back to the 50s, see [15]. However,
it took another 30 years until first papers were published describing explicitly
the application of EAs to neural networks (NNs) [40, 48]. The subject quickly
received considerable interest—mostly however in the evolutionary computation
community—and several papers were published in the early nineties concentrat-
ing on both the optimisation of the network architecture and its weights. Al-
though nowadays NNs and EAs are used frequently and successfully together in
a variety of applications, the real breakthrough, that is, to evolve neural systems
showing qualitatively new behaviour has not been reached yet. The complexity
barrier might have been pushed along but it has not been broken down. Nev-
ertheless, many important questions on the architecture, the nature of learning,
and the development of neural systems have been raised and important results
have been obtained.



There are still only few works on connecting brain science or computational
neuroscience with evolutionary computation, however, first promising attempts
have been made. On more general terms, it is a reasonable question to ask
whether it will be possible to understand the brain without understanding how
it evolved. The brain is a result of the past as much as of the present. That means
that learning (the present) can only operate on an appropriate structure (the
past). The current structure reflects its history as much as its functionality. The
flexibility and adaptability of the brain is based on its structural organisation
which is the result of its ontogenetic development. The brain is not one design
but many designs; it is like a cathedral where many different parts have been
added and removed over the centuries. However, not all designs are capable
of such continuous changes and the fact that the brain is, is deeply rooted in
its structural organisation. If we follow this line of thought, the only viable
conclusion is that much more work should be done in combining evolutionary
methodology with models of the biological brain.

From a technical point of view, the information processing capabilities of ver-
tebrate brains outperform artificial systems in many respects. Abstract models
of NNs exist that, in principle, exhibit universal approximation and computa-
tion properties. However, the general question of how to efficiently design an
appropriate neural system for a given task remains open and complexity the-
ory reveals the need for using heuristics (e.g. [68]). The answer is likely to be
found by investigating the three major organisation principles of biological NNs:
evolution, self-organisation, and learning.

In the following, we introduce EAs in the framework of stochastic search.
In section 3, we discuss evolutionary structure optimisation of neural systems.
Thereafter, we will suggest some more recent trends in combining EAs and neural
systems. Needless to say that such a collection is a subjective, biased selection.
We do neither claim to be fair to other researchers nor that the list is complete,
but hope to present some interesting and relatively novel approaches. General
surveys (beyond the scope of this paper) can be found in [51, 56, 64, 75].

2 Evolutionary Computation

Evolutionary algorithms (EAs) can be considered a special class of global random
search algorithms. Let the search problem under consideration be described by
a quality function f : G → F to be optimised, where G denotes the search space
(i.e. the space of candidate solutions) and F the (at least partially) ordered space
of cost values. The general global random search scheme can be described as
follows:

➀ Choose a joint probability distribution P
(t)

Gλ on Gλ. Set t← 1.

➁ Obtain λ points g
(t)
1 , . . . , g

(t)
λ by sampling from the distribution P

(t)

Gλ . Eval-
uate these points using f .

➂ According to a fixed (algorithm dependent) rule construct a new probabil-
ity distribution P

(t+1)

Gλ on Gλ.



➃ Check for some appropriate stopping condition; if the algorithm has not
terminated, substitute t← t + 1 and return to step ➁ .

In evolutionary computation, the iterations of the algorithm are called genera-
tions. The search distribution of an EA is given by the parent population, the
variation operators, and the strategy parameters. The parent population is a
multiset of µ points g̃

(t)
1 , . . . , g̃(t)

µ ∈ G. Each point corresponds to the genotype

of an individual. In each generation, λ offspring g
(t)
1 , . . . , g

(t)
λ ∈ G are cre-

ated by the following procedure: Individuals for reproduction are chosen from
g̃

(t)
1 , . . . , g̃(t)

µ . This is called mating selection and can be deterministic or stochas-
tic (where the sampling can be with or without replacement). The offspring’s
genotypes result from applying variation operators to these selected parents.
Variation operators are deterministic or partially stochastic mappings from Gk

to Gl, 1 ≤ k ≤ µ, 1 ≤ l ≤ λ. An operator with k = l = 1 is called mutation,
whereas recombination operators involve more than one parent and can lead to
more than one offspring. Multiple operators can be applied consecutively to
generate offspring. For example, an offspring g

(t)
i can be the product of ap-

plying recombination orec : G2 → G to two randomly selected parents g̃
(t)
i1

and

g̃
(t)
i2

followed by mutation omut : G → G, that is, g
(t)
i = omut

(
orec

(
g̃

(t)
i1

, g̃
(t)
i2

))
.

Evolutionary algorithms allow for incorporation of a priori knowledge about
the problem by using tailored variation operators combined with an appropriate
encoding of the candidate solutions.

Let PGλ

(
g1, . . . , gλ | g̃(t)

1 , . . . , g̃(t)
µ ; θ(t)

)
be the probability that parents g̃

(t)
1 ,

. . . , g̃(t)
µ create offspring g

(t)
1 , . . . , g

(t)
λ . This distribution is additionally parame-

terised by some external strategy parameters θ(t) ∈ Θ, which may vary over time.
In some EAs, the offspring are created independently of each other based on the
same distribution. Evaluation of an individual corresponds to determining its
fitness by assigning the corresponding cost value given by the quality function f .
Evolutionary algorithms can—in principle—handle optimisation problems that
are non-differentiable, non-continuous, multi-modal, and noisy. They are easy
to parallelise by distributing the fitness evaluations of the offspring. In single-
objective optimisation, we usually have F ⊂ �, whereas in multi-objective op-
timisation, see section 4.1, vector-valued functions (e.g. F ⊂ �k, k > 1) are
considered. In co-evolution (see section 4.2), where individuals in one genera-
tion contribute reciprocally to the forces of selection, the scenario is extended
to fitness functions that do not consider each individual in isolation, but in the
context of the current population (i.e. f : Gλ → Fλ or even f : Gλ+µ → Fλ+µ if
the parents are also involved in the fitness calculation). The interaction of the
individuals may be competitive or cooperative. As the fitness function is not
fixed, co-evolution allows for a “bootstrapping” of the evolutionary process and
“open ended” evolution.

Updating the search distribution corresponds to environmental selection and
sometimes additional strategy adaptation of external strategy parameters θ(t+1).
The later is extensively discussed in the context of optimisation of NNs in [30, 33].



A selection method chooses µ new parents g̃
(t+1)
1 , . . . , g̃(t+1)

µ from g̃
(t)
1 , . . . , g̃(t)

µ

and g
(t)
1 , . . . , g

(t)
λ . This second selection process is called environmental selection

and may be deterministic or stochastic. Either the mating or the environmental
selection must be based on the objective function values of the individuals and
must prefer those with better fitness—this is the driving force of the evolutionary
adaptation process.

It is often argued that evolutionary optimisation is theoretically not well
understood—ignoring the tremendous progress in EA theory during the last
years. Although there are only a few results for general settings (e.g. convergence
[59]), there exist rigorous expected runtime analyses of simplified algorithms
on restricted, but important classes of optimisation problems, see [34, 13] and
references therein. The article [5] provides good starting points for reading about
EA theory.

3 Evolutionary Structure Optimisation of Neural Systems

Although NNs are successfully applied to support evolutionary computation (see
section 4.7), the most prominent combination of EAs and NNs is evolutionary
optimisation of neural systems. In general, the major components of an adaptive
system can be described by a triple (S,A,D), where S stands for the structure
or architecture of the adaptive system, A is a learning algorithm that oper-
ates on S and adapts flexible parameters of the system, and D denotes the
sample data. Learning of an adaptive (e.g. neural) system can be defined as
goal-directed, data-driven changing of its behaviour. Examples of learning algo-
rithms for technical NNs include gradient-based heuristics or quadratic program
solvers. Such “classical” optimisation methods are usually considerably faster
than pure evolutionary optimisation of these parameters, although they might
be more prone to getting stuck in local minima. However, there are cases where
“classical” optimisation methods are not applicable, for example when the neu-
ral model or the objective function is non-differentiable (e.g. see section 4.2).
Still, the main application of evolutionary optimisation in the field of neurocom-
puting is adapting the structures of neural systems, that is, optimising those
parts that are not altered by the learning algorithm. Both in biological and
technical neural systems the structure is crucial for the learning behaviour—the
evolved structures of brains are an important reason for their incredible learn-
ing performance: “development of intelligence requires a balance between innate
structure and the ability to learn” [4]. Hence, it appears to be obvious to apply
evolutionary methods for adapting the structure of neural systems for technical
applications, a task for which generally no efficient “classical” methods exist.

Encodings in Structure Optimisation. A prototypical example of evolutionary
optimisation of a neural architecture on which a learning algorithm operates
is the search for an appropriate topology for a multi-layer perceptron NN, see
[74, 27, 21] for some real-world applications. Here, the search space ultimately
consists of graphs. When using EAs to design NN graphs, the key questions are



how to encode the topologies and how to define variation operators that operate
on this representation. In terms of section 2, operators and representation both
determine the search distribution and thereby the neighbourhood of NNs in the
search space. Often an intermediate space, the phenotype space P , is introduced
in order to facilitate the analysis of the problem and of the optimisation process
itself. The fitness function can then be written as f = f ′ ◦ φ, where φ : G → P
and f ′ : P → F . The definition of the phenotype space is to a certain degree
arbitrary (note that the freedom in the definition of the phenotype space equally
exists in evolutionary biology [46] and is not restricted to EAs). The probabil-
ity that a certain phenotype p ∈ P is created from a population of phenotypes
strongly depends on the representation and the variation operators. When the
genotype-phenotype mapping φ is not injective, we speak of neutrality, which
may considerably influence the evolutionary process (in the context of NNs, e.g.
see [31]). We assume that P is equipped with an extrinsic (i.e. independent of
the evolutionary process) metric or at least a consistent neighbourhood measure,
which may be defined in relation to the function of the individual. In the case
of NNs, the phenotype space is often simply the space of all possible connection
matrices of the networks. Representations for evolutionary structure optimi-
sation of NNs have often been classified in “direct” and “indirect” encodings.
Coarsely speaking, a direct encoding or representation is one where (intrinsic)
neighbourhood relations in the genotype space (induced by PGλ) broadly corre-
spond to extrinsic distances of the corresponding phenotypes. Note that such a
classification only makes sense once a phenotype space with an extrinsic distance
measure has been defined and that it is only valid for this particular definition
(this point has frequently been overlooked because of the implicit agreement
on the definition of the phenotype space, e.g. the graph space equipped with
a graph editing distance). This does not imply that both spaces are identical.
In an indirect encoding the genotype usually encodes a rule, a programme or
a mapping to build, grow or develop the phenotype. Such encoding foster the
design of large, modular systems. Examples can be found in [42, 24, 17, 64, 65].

4 Trends in Combining EAs and Neural Computation

4.1 Multi-objective Optimisation of Neural Networks

Designing a neural system usually requires optimisation of several, often conflict-
ing objectives. This includes coping with the bias-variance dilemma or trading
off speed of classification vs. accuracy in real-time applications. Although the
design of neural systems is obviously a multi-objective problem, it is usually
tackled by aggregating the objectives into a scalar function and applying stan-
dard methods to the resulting single-objective task. However, this approach
will in general not find all desired solutions [11]. Furthermore, the aggregation
weights have to be chosen correctly in order to obtain the desired result. In
practice it is more convenient to make the tradeoffs between the objectives ex-
plicit (e.g. visualise them) after the design process and select from a diverse set
of systems the one that seems to be most appropriate. This can be realised by



“true” multi-objective optimisation (MOO). The MOO algorithms approximate
the set of Pareto-optimal tradeoffs, that is, those solutions that cannot be im-
proved in any objective without getting worse in at least one other objective.
From the resulting set of systems the final solution can be selected after optimi-
sation. There have been considerable advances in MOO recently, which can now
be incorporated into machine learning techniques. In particular, it was realised
that EAs are very well suited for multi-criterion optimisation and they have
become the MOO methods of choice in the last years [10, 12]. Recent applica-
tions of evolutionary MOO to neural systems address the design of multi-layer
perceptron NNs [1, 2, 36, 74, 21, 8] and support vector machines (SVMs) [29].

4.2 Reinforcement Learning

In the standard reinforcement learning (RL) scenario, an agent perceives stim-
uli from the environment and decides based on its policy which action to take.
Influenced by the actions, the environment changes its state and possibly emits
reward signals. The reward feedback may be sparse, unspecific, and delayed.
The goal of the agent is to adapt its policy, which may be represented by (or
be based on) a NN, such that the expected reward is maximised. The gradient
of the performance measure with respect to NN parameters can usually not be
computed (but approximated in case of stochastic policies, e.g. see [70, 43]).
Evolutionary algorithms have proven to be powerful and competitive methods
for solving RL problems [50, 28, 41]. The recent success of evolved NNs in game
playing [9, 16] demonstrates the potential of combining NNs and evolutionary
computation for RL. The possible advantages of EAs compared to standard RL
methods are that they allow—in contrast to the common temporal difference
learning methods—for direct search in the space of (stochastic as well as deter-
ministic) policies, are often easier to apply and are more robust with respect to
the tuning of the meta-parameters (learning rates, etc.), can be applied if the
function approximators are non-differentiable, and can also optimise the under-
lying structure of the function approximators.

Closely related is the research area of evolutionary robotics devoted to the
evolution of “embodied” neural control systems [52, 44, 55, 72]. Here promising
applications of the principle of co-evolution can be found.

4.3 Evolving Network Ensembles

Ensembles of NNs that together solve a given task can be preferable to monolithic
systems. For example, they may allow for a task decomposition that is necessary
for efficiently solving a complex problem and they are often easier to interpret
[66]. The population concept in EAs appears to be ideal for designing neural
network ensembles, as, for example, demonstrated for classification tasks in [45,
8]. In the framework of decision making and games, Mark et al. [47] developed
a combination of NN ensembles and evolutionary computation. Two ensembles
are used to predict the opponents strategy and to optimise the own action.
Using an ensemble instead of a single network ensures to be able to maintain



different opponent experts and counter-strategies in parallel. The EA is used
to determine the optimal input for the two network ensembles. Ensembles of
networks have also been shown to be a superior alternative to single NNs for
fitness approximation in evolutionary optimisation (see section 4.7). In [38]
network ensembles have been optimised with evolution strategies and then used
in an evolutionary computation framework as meta-models. Besides the increase
in approximation quality an ensemble of networks has the advantage that the
fidelity of the networks can be estimated based on the variance of the ensemble.

4.4 Evolutionary Optimisation of Learning

Neural networks are often chosen as approximation or classification models be-
cause of their learning and generalisation behaviour. Therefore, it seems reason-
able to target an improvement of these capabilities using evolutionary compu-
tation. This includes the optimisation of learning rules (e.g. see [6, 7]). Further,
the neural structure can be evolved to improve the learning behaviour [25, 26].
In [25], networks that learn to learn are evolved for efficiently solving classes of
toy as well as real-world problems. The authors propose different ways to realise
this additional generalisation property called 2nd order generalisation.

4.5 Optimising Kernel Methods

Adopting the extended definition of structure as that part of the adaptive sys-
tem that cannot be optimised by the learning algorithm itself, model selection of
kernel-based methods is a structure optimisation problem. For example, choos-
ing the right kernel for a SVM is important for its performance. When a pa-
rameterised family of kernel functions is considered, kernel adaptation reduces
to finding an appropriate parameter vector. These “hyperparameters” are usu-
ally determined by grid search, which is only suitable for the adjustment of very
few parameters, or by gradient-based approaches. When applicable, the latter
methods are highly efficient albeit susceptible to local optima. Still, often the
gradient of the performance criterion w.r.t. the hyperparameters can neither be
computed nor accurately approximated. Therefore, there is a growing interest
in applying EAs to model selection of SVMs. In [18, 60, 29], evolution strate-
gies (i.e. EAs tailored for real-valued optimisation) were proposed for adapting
SVM hyperparameters, in [14, 39, 49, 19] genetic algorithms (EAs that represent
candidate solutions as fixed-length strings over a finite alphabet) were used for
SVM feature selection.

4.6 Computational Neuroscience and Brain-inspired Architectures

There are only a few applications of evolutionary computation in brain science
[3, 63, 69, 32, 58], although evolutionary “analysis by synthesis” guided by neu-
robiological knowledge may be a powerful tool in computational neuroscience.
The challenge is to force artificial evolution to favour solutions that are reason-
able from the biological point of view by incorporating as much neurobiological



knowledge as possible in the design process (e.g. by a deliberate choice of the
basic system structure and constraints that ensure biological plausibility).

In the field of brain inspired vision systems [20, 73] evolutionary algorithms
have been used to optimise the structure of the system (i.e. feature banks or
hierarchical layers) and to determine a wide variety of parameters. Evolution-
ary algorithms have been successfully applied to the Neocognitron structure
[71, 53, 67], which was one of the first hierarchical vision systems based on the
structure of its biological counterpart [20]. More recent work employed evolu-
tion strategies to optimise the nonlinearities and the structure of a biologically
inspired vision network, which is capable of performing a complex 3D real world
object classification task [61, 62]. Schneider et al. employed a directly coded evo-
lutionary optimisation that was capable of performing well in a 1800-dimensional
search space. In a second experiment evolutionary optimisation was successfully
combined with local unsupervised learning based on a sparse representation.
The resulting architecture outperformed other methods like SVMs.

4.7 Neural Networks as Meta-models

Linear or quadratic models or in more general terms meta-models have been
used in experimental optimisation since many years to approximate experimental
data. The optimisation is then carried out using the model as the objective
function. After the optimisation algorithm has converged, the optimal solution
is tested in an experiment. If necessary the response surface model is rebuild
and the optimisation process is started again. More recently, systems have been
subject to optimisation that are so complex that even simulations are very time-
consuming and costly. Therefore, the meta-model framework has been applied
to optimisation in general and in particular to EAs. Although first approaches
to combine fitness approximation with EAs are relatively old [23], it is only
in the last couple of years that the field has received wider attention, see [35]
for a review. It has been revealed that the strategy to keep the update of the
meta-model and the optimisation process separate is not advisable, since the
optimisation is easily misled if the modelling quality is limited (which is often
the case in practical applications). Jin et al. [37] have suggested to use the meta-
model alongside the true objective function to guarantee correct convergence.
Furthermore, the use of NNs as models is particularly advantageous because
of their online learning ability. Thus, the approximation quality of NNs can
continuously be improved during the optimisation process (e.g. [37, 57, 54]).
In [27, 22] evolutionary structure optimisation methods have been successfully
used to improve NNs which are in turn used as approximation models in an
evolutionary design optimisation framework.

5 Conclusion

Finding an appropriate neural system for a given task usually requires the solu-
tion of difficult optimisation problems. Evolutionary algorithms (EAs) are well



suited to solve many of these problems, especially when higher order optimisa-
tion methods cannot be applied. Therefore, we argue that EAs should be a tool
for the design of neural systems that is as common as gradient descent methods.

At the same time there is plenty of room for synergies that go beyond the
use of evolutionary computation as structure optimisation methods for neural
systems. Some of these have been highlighted in the trend list which we pre-
sented in this paper. We can only speculate which one might have the highest
potential for a long-lasting contribution. However, it seems that bringing evo-
lutionary computation together with brain science bears many advantage both
on a technical level (e.g. for data analysis) and on an explanatory level (e.g. as
a means to better understand the brain structure).

References

[1] H. A. Abbass. An evolutionary artificial neural networks approach for breast cancer
diagnosis. Artificial Intelligence in Medicine, 25(3):265–281, 2002.

[2] H. A. Abbass. Speeding up backpropagation using multiobjective evolutionary algorithms.
Neural Computation, 15(11):2705–2726, 2003.

[3] K. Arai, S. Das, E. L. Keller, and E. Aiyoshi. A distributed model of the saccade system:
simulations of temporally perturbed saccades using position and velocity feedback. Neural
Networks, 12:1359–1375, 1999.

[4] M. A. Arbib. Towards a neurally-inspired computer architecture. Natural Computing,
2(1):1–46, 2003.

[5] H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to analyse evolutionary algorithms.
Theoretical Computer Science, 287:101–130, 2002.

[6] J. A. Bullinaria. Evolving efficient learning algorithms for binary mappings. Neural
Networks, 16:793–800, 2003.

[7] J. A. Bullinaria. Evolving neural networks: Is it really worth the effort? In 13th European
Symposium on Artificial Neural Networks (ESANN 2005), 2005.

[8] A. Chandra and X. Yao. Evolutionary framework for the construction of diverse hybrid
ensembles. In 13th European Symposium on Artificial Neural Networks (ESANN 2005),
2005.

[9] K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and intelligence.
Proceedings of the IEEE, 87(9):1471–1496, 1999.

[10] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

[11] I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of
objectives for pareto set generation in multicriteria optimization problems. Structural
Optimization, 14(1):63–69, 1997.

[12] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2001.

[13] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science, 276:51–81, 2002.

[14] D. R. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. B. Porter, and J. P. Theiler. Genetic
algorithms and support vector machines for time series classification. In B. Bosacchi et al.,
editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary
Computation V., volume 4787 of Proceedings of the SPIE, pages 74–85, 2002.

[15] D. B. Fogel, editor. Evolutionary Computation: The Fossile Record. IEEE Press, 1998.

[16] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning evolutionary chess
program. Proceedings of the IEEE, 92(12):1947–1954, 2004.



[17] C. M. Friedrich and C. Moraga. An evolutionary method to find good building-blocks
for architectures of artificial neural networks. In Sixth International Conference on
Information Processing and Management of Uncertainty in Knowledge Based Systems
(IPMU’96), volume 2, pages 951–956, 1996.

[18] F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters. In M. Ver-
leysen, editor, 12th European Symposium on Artificial Neural Networks (ESANN 2004),
pages 519–524. Evere, Belgium: d-side publications, 2004.

[19] H. Fröhlich, O. Chapelle, and B. Schölkopf. Feature selection for support vector machines
by means of genetic algorithms. In 15th IEEE International Conference on Tools with
AI (ICTAI 2003), pages 142–148. IEEE Computer Society, 2003.

[20] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 39:139–202,
1980.

[21] A. Gepperth and S. Roth. Applications of multi-objective structure optimization. In 13th
European Symposium on Artificial Neural Networks (ESANN 2005), 2005.

[22] L. Graening, Y. Jin, and B. Sendhoff. Efficient evolutionary optimization using individual-
based evolution control and neural networks: A comparative study. In 13th European
Symposium on Artificial Neural Networks (ESANN 2005), 2005.

[23] J. J. Grefenstette and J. M. Fitzpatrick. Genetic search with approximate fitness evalua-
tions. In J. J. Grefenstette, editor, International Conference on Genetic Algorithms and
Their Applications, pages 112–120. Lawrence Erlbaum Associates, 1985.

[24] F. Gruau. Automatic definition of modular neural networks. Adaptive Behavior, 3(2):151–
183, 1995.

[25] M. Hüsken, J. E. Gayko, and B. Sendhoff. Optimization for problem classes – neural
networks that learn to learn. In X.Yao, editor, IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks. IEEE Press, 2000. 98-109.

[26] M. Hüsken, C. Igel, and M. Toussaint. Task-dependent evolution of modularity in neural
networks. Connection Science, 14(3):219–229, 2002.

[27] M. Hüsken, Y. Jin, and B. Sendhoff. Structure optimization of neural networks for aero-
dynamic optimization. Soft Computing, 9(1):21–28, 2005.

[28] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In R. Sarker
et al., editors, Congress on Evolutionary Computation (CEC 2003), volume 4, pages
2588–2595. IEEE Press, 2003.

[29] C. Igel. Multiobjective model selection for support vector machines. In C. A. Coello Coello
et al., editors, Proceedings of the Third International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2005), volume 3410 of LNAI, pages 534–546. Springer-
Verlag, 2005.

[30] C. Igel and M. Kreutz. Operator adaptation in evolutionary computation and its appli-
cation to structure optimization of neural networks. Neurocomputing, 55(1-2):347–361,
2003.

[31] C. Igel and P. Stagge. Effects of phenotypic redundancy in structure optimization. IEEE
Transactions on Evolutionary Computation, 6(1):74–85, 2002.

[32] C. Igel, W. von Seelen, W. Erlhagen, and D. Jancke. Evolving field models for inhibition
effects in early vision. Neurocomputing, 44-46(C):467–472, 2002.

[33] C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary optimization of neural systems: The
use of self-adptation. In M. G. de Bruin et al., editors, Trends and Applications in Con-
structive Approximation, number 151 in International Series of Numerical Mathematics.
Birkhäuser Verlag, 2005. In press.

[34] J. Jägersküpper. Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal
fitness landscapes. In Foundations of Genetic Algorithms (FOGA VIII), LNCS. Springer-
Verlag, 2005.



[35] Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing, 9(1):3–12, 2005.

[36] Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and ensembling us-
ing multi-objective evolutionary algorithms. In Congress on Evolutionary Computation
(CEC’04), pages 1–8. IEEE Press, 2004.

[37] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization with ap-
proximate fitness functions. IEEE Transactions on Evolutionary Computation, 6(5):481–
494, 2002.

[38] Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and
neural network ensembles. In K. Deb et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference - GECCO, volume 1 of LNCS, pages 688–699.
Springer, 2004.

[39] K. Jong, E. Marchiori, and A. van der Vaart. Analysis of proteomic pattern data for
cancer detection. In G. R. Raidl et al., editors, Applications of Evolutionary Computing,
number 3005 in LNCS, pages 41–51. Springer-Verlag, 2004.

[40] R. R. Kampfner and M. Conrad. Computational modeling of evolutionary learning pro-
cesses in the brain. Bulletin of Mathematical Biology, 45(6):931–968, 1983.

[41] Y. Kassahun and G. Sommer. Efficient reinforcement learning through evolutionary ac-
quisition of neural topologies. In 13th European Symposium on Artificial Neural Networks
(ESANN 2005), 2005.

[42] H. Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex Systems, 4:461–476, 1990.

[43] V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control
and Optimization, 42(4):1143–1166, 2003.

[44] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms.
Nature, 406:974–978, 2000.

[45] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning.
IEEE Transactions on Evolutionary Computation, 4(4):380–387, 2000.

[46] M. Mahner and M. Kary. What exactly are genomes, genotypes and phenotypes? And
what about phenomes? Journal of Theoretical Biology, 186(1):55–63, 1997.

[47] A. Mark, H. Wersing, and B. Sendhoff. A decision making framework for game playing
using evolutionary optimization and learning. In Y. Shi, editor, Congress on Evolutionary
Computation (CEC), volume 1, pages 373–380. IEEE Press, 2004.

[48] G. Miller and P. Todd. Designing neural networks using genetic algorithms. In J. D.
Schaffer, editor, Proceeding of the 3rd International Conference on Genetic Algorithms,
pages 379–384. Morgan Kaufmann, 1989.

[49] M. T. Miller, A. K. Jerebko, J. D. Malley, and R. M. Summers. Feature selection for
computer-aided polyp detection using genetic algorithms. In A. V. Clough and A. A.
Amini, editors, Medical Imaging 2003: Physiology and Function: Methods, Systems, and
Applications, volume 5031 of Proceedings of the SPIE, pages 102–110, 2003.

[50] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary Algorithms for Rein-
forcement Learning. Journal of Artificial Intelligence Research, 11:199–229, 1999.

[51] S. Nolfi. Evolution and learning in neural networks. In M. A. Arbib, editor, The Handbook
of Brain Theory and Neural Networks, pages 415–418. MIT Press, 2 edition, 2002.

[52] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Techno
logy of Self-Organizing Machines. Intelligent Robotics and Autonomous Agents. MIT
Press, 2000.

[53] Z. Pan, T. Sabisch, R. Adams, and H. Bolouri. Staged training of neocognitron by
evolutionary algorithms. In P. J. Angeline et al., editors, Proceedings of the Congress on
Evolutionary Computation, volume 3, pages 1965–1972. IEEE Press, 1999.



[54] M. Papadrakakis, N. Lagaros, and Y. Tsompanakis. Optimization of large-scale 3D trusses
using evolution strategies and neural networks. International Journal of Space Structures,
14(3):211–223, 1999.

[55] F. Pasemann, U. Steinmetz, M. Hülse, and B. Lara. Robot control and the evolution of
modular neurodynamics. Theory in Biosciences, 120(3-4):311–326, 2001.

[56] M. Patel, V. Honavar, and K. Balakrishnan, editors. Advances in the Evolutionary Syn-
thesis of Intelligent Agents. MIT Press, 2001.

[57] S. Pierret. Turbomachinery blade design using a Navier-Stokes solver and artificial neural
network. ASME Journal of Turbomachinery, 121(3):326–332, 1999.

[58] E. T. Rolls and S. M. Stringer. On the design of neural networks in the brain by genetic
evolution. Progress in Neurobiology, 6(61):557–579, 2000.

[59] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Kovač, Hamburg, 1997.

[60] T. P. Runarsson and S. Sigurdsson. Asynchronous parallel evolutionary model selection for
support vector machines. Neural Information Processing – Letters and Reviews, 3(3):59–
68, 2004.

[61] G. Schneider, H. Wersing, B. Sendhoff, and E. Körner. Coupling of evolution and learning
to optimize a hierarchical object recognition model. In X. Yao et al., editors, Parallel
Problem Solving from Nature (PPSN), LNCS, pages 662–671. Springer Verlag, 2004.

[62] G. Schneider, H. Wersing, B. Sendhoff, and E. Körner. Evolutionary optimization of an
hierarchical object recognition model. IEEE Transactions on Systems, Man and Cyber-
netics, Part B, 2004. Accepted.

[63] S. Schneider, C. Igel, C. Klaes, H. Dinse, and J. Wiemer. Evolutionary adaptation of
nonlinear dynamical systems in computational neuroscience. Journal of Genetic Pro-
gramming and Evolvable Machines, 5(2):215–227, 2004.

[64] B. Sendhoff. Evolution of Structures – Optimization of Artificial Neural Structures for
Information Processing. Shaker Verlag, Aachen, 1998.

[65] B. Sendhoff and M. Kreutz. A model for the dynamic interaction between evolution and
learning. Neural Processing Letters, 10(3):181–193, 1999.

[66] A. J. C. Sharkey. On combining artificial neural nets. Connection Science, 8(3-4):299–313,
1996.

[67] D. Shi and C. L. Tan. GA-based supervised learning of neocognitron. In International
Joint Conference on Neural Network (IJCNN 2000). IEEE Press, 2000.

[68] J. Š́ıma. Training a single sigmoidal neuron is hard. Neural Computation, 14:2709–2728,
2002.

[69] O. Sporns, G. Tononi, and G. M. Edelman. Theoretical neuroanatomy: relating anatom-
ical and functional connectivity in graphs and cortical connection matrices. Cerebral
Cortex, 10(2):127–141, 2000.

[70] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-
forcement learning with function approximation. In S. A. Solla et al., editors, Advances
in Neural Information Processing Systems 12, pages 1057–1063. MIT Press, 2000.

[71] M.-Y. Teo, L.-P. Khoo, and S.-K. Sim. Application of genetic algorithms to optimise
neocognitron network parameters. Neural Network World, 7(3):293–304, 1997.

[72] J. Walker, S. Garrett, and M. Wilson. Evolving controllers for real robots: A survey of
the literature. Adaptive Behavior, 11:179–203, 2003.

[73] H. Wersing and E. Körner. Learning optimized features for hierarchical models of invariant
recognition. Neural Computation, 15(7):1559–1588, 2003.

[74] S. Wiegand, C. Igel, and U. Handmann. Evolutionary multi-objective optimization of
neural networks for face detection. International Journal of Computational Intelligence
and Applications, 4(3):237–253, 2004.

[75] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447,
1999.


