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Abstract. Evolutionary and neural computation share the same philos-
ophy to use biological information processing for the solution of technical
problems. Besides this important but rather abstract common foundation,
there have also been many successful combinations of both methods for
solving problems as applied as the design of turbomachinery components.
In this paper, we will introduce evolutionary algorithms primarily for a
“neural” audience and demonstrate their usefulness for neural computa-
tion. Furthermore, we will introduce a list of some more recent trends in
combining evolutionary and neural computation, that will show that syn-
ergies between the two fields go beyond the typically quoted example of
topology optimisation of neural networks. We strive to increase the aware-
ness for these trends in the neural computation community and spark some
interest in one or the other of the shown directions.

1 Introduction

Artificial evolutionary and neural systems have a long history, which in many
respects resembles each other. In their beginnings, they were both met with con-
siderable scepticism from both the biological as well as the technological world.
During their maturation both fields met a couple of times, but not as often
as one might expect bearing in mind that their philosophy to extract princi-
ples of biological information processing and apply it to technical systems is so
similar. Although not directly aimed at the formation of neural systems, the
design of intelligent automata was among the earliest applications of evolution-
ary algorithms (EAs) and may be traced back to the 50s, see [15]. However,
it took another 30 years until first papers were published describing explicitly
the application of EAs to neural networks (NNs) [40, 48]. The subject quickly
received considerable interest—mostly however in the evolutionary computation
community—and several papers were published in the early nineties concentrat-
ing on both the optimisation of the network architecture and its weights. Al-
though nowadays NNs and EAs are used frequently and successfully together in
a variety of applications, the real breakthrough, that is, to evolve neural systems
showing qualitatively new behaviour has not been reached yet. The complexity
barrier might have been pushed along but it has not been broken down. Nev-
ertheless, many important questions on the architecture, the nature of learning,
and the development of neural systems have been raised and important results
have been obtained.
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There are still only few works on connecting brain science or computational
neuroscience with evolutionary computation, however, first promising attempts
have been made. On more general terms, it is a reasonable question to ask
whether it will be possible to understand the brain without understanding how
it evolved. The brain is a result of the past as much as of the present. That means
that learning (the present) can only operate on an appropriate structure (the
past). The current structure reflects its history as much as its functionality. The
flexibility and adaptability of the brain is based on its structural organisation
which is the result of its ontogenetic development. The brain is not one design
but many designs; it is like a cathedral where many different parts have been
added and removed over the centuries. However, not all designs are capable
of such continuous changes and the fact that the brain is, is deeply rooted in
its structural organisation. If we follow this line of thought, the only viable
conclusion is that much more work should be done in combining evolutionary
methodology with models of the biological brain.

From a technical point of view, the information processing capabilities of ver-
tebrate brains outperform artificial systems in many respects. Abstract models
of NNs exist that, in principle, exhibit universal approximation and computa-
tion properties. However, the general question of how to efficiently design an
appropriate neural system for a given task remains open and complexity the-
ory reveals the need for using heuristics (e.g. [68]). The answer is likely to be
found by investigating the three major organisation principles of biological NNs:
evolution, self-organisation, and learning.

In the following, we introduce EAs in the framework of stochastic search.
In section 3, we discuss evolutionary structure optimisation of neural systems.
Thereafter, we will suggest some more recent trends in combining EAs and neural
systems. Needless to say that such a collection is a subjective, biased selection.
We do neither claim to be fair to other researchers nor that the list is complete,
but hope to present some interesting and relatively novel approaches. General
surveys (beyond the scope of this paper) can be found in [51, 56, 64, 75].

2 Evolutionary Computation

Evolutionary algorithms (EAs) can be considered a special class of global random
search algorithms. Let the search problem under consideration be described by
a quality function f : G — F to be optimised, where G denotes the search space
(i.e. the space of candidate solutions) and F the (at least partially) ordered space
of cost values. The general global random search scheme can be described as
follows:

O Choose a joint probability distribution Péi) on G*. Set t « 1.

0 Obtain A points ggt), e ,gg\t) by sampling from the distribution Pg(i). Eval-

uate these points using f.

O According to a fixed (algorithm dependent) rule construct a new probabil-
ity distribution ngl) on G*.
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O Check for some appropriate stopping condition; if the algorithm has not
terminated, substitute ¢ < ¢ + 1 and return to step 0.

In evolutionary computation, the iterations of the algorithm are called genera-
tions. The search distribution of an EA is given by the parent population, the
variation operators, and the strategy parameters. The parent population is a
multiset of p points Q(lt), e ,Qﬁf) € G. Each point corresponds to the genotype

of an individual. In each generation, \ offspring ggt), . ,gg\t) € G are cre-

ated by the following procedure: Individuals for reproduction are chosen from
gY’, ceey gfj’. This is called mating selection and can be deterministic or stochas-
tic (where the sampling can be with or without replacement). The offspring’s
genotypes result from applying variation operators to these selected parents.
Variation operators are deterministic or partially stochastic mappings from G¥
to G, 1 <k <pu,1 <1<\ An operator with k = [ = 1 is called mutation,
whereas recombination operators involve more than one parent and can lead to
more than one offspring. Multiple operators can be applied consecutively to

generate offspring. For example, an offspring ggt) can be the product of ap-
plying recombination opee : G2 — G to two randomly selected parents ng) and

gg? followed by mutation oy, : G — G, that is, ggt) = Omut | Orec gg?,gﬁ?

Evolutionary algorithms allow for incorporation of a priori knowledge about
the problem by using tailored variation operators combined with an appropriate
encoding of the candidate solutions.

Let Pga (gl, ce g |f]§t)7 . ,gfﬁ; O(t)> be the probability that parents g?’,

ey gﬁ? create offspring g(lt), . ,gg\t). This distribution is additionally parame-

terised by some external strategy parameters @) € ©, which may vary over time.
In some EAs, the offspring are created independently of each other based on the
same distribution. Evaluation of an individual corresponds to determining its
fitness by assigning the corresponding cost value given by the quality function f.
Evolutionary algorithms can—in principle—handle optimisation problems that
are non-differentiable, non-continuous, multi-modal, and noisy. They are easy
to parallelise by distributing the fitness evaluations of the offspring. In single-
objective optimisation, we usually have F C R, whereas in multi-objective op-
timisation, see section 4.1, vector-valued functions (e.g. F C R¥, k > 1) are
considered. In co-evolution (see section 4.2), where individuals in one genera-
tion contribute reciprocally to the forces of selection, the scenario is extended
to fitness functions that do not consider each individual in isolation, but in the
context of the current population (i.e. f: G» — F* or even f : GM#H — FATHif
the parents are also involved in the fitness calculation). The interaction of the
individuals may be competitive or cooperative. As the fitness function is not
fixed, co-evolution allows for a “bootstrapping” of the evolutionary process and
“open ended” evolution.

Updating the search distribution corresponds to environmental selection and
sometimes additional strategy adaptation of external strategy parameters (41
The later is extensively discussed in the context of optimisation of NNs in [30, 33].
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A selection method chooses ;1 new parents g‘f“), . ,QSH) from Q(lt), . ,Qﬁf)

and ggt), cee gg\t). This second selection process is called environmental selection

and may be deterministic or stochastic. Either the mating or the environmental
selection must be based on the objective function values of the individuals and
must prefer those with better fitness—this is the driving force of the evolutionary
adaptation process.

It is often argued that evolutionary optimisation is theoretically not well
understood—ignoring the tremendous progress in EA theory during the last
years. Although there are only a few results for general settings (e.g. convergence
[59]), there exist rigorous expected runtime analyses of simplified algorithms
on restricted, but important classes of optimisation problems, see [34, 13] and
references therein. The article [5] provides good starting points for reading about
EA theory.

3 Evolutionary Structure Optimisation of Neural Systems

Although NNs are successfully applied to support evolutionary computation (see
section 4.7), the most prominent combination of EAs and NNs is evolutionary
optimisation of neural systems. In general, the major components of an adaptive
system can be described by a triple (S, A, D), where S stands for the structure
or architecture of the adaptive system, A is a learning algorithm that oper-
ates on S and adapts flexible parameters of the system, and D denotes the
sample data. Learning of an adaptive (e.g. neural) system can be defined as
goal-directed, data-driven changing of its behaviour. Examples of learning algo-
rithms for technical NNs include gradient-based heuristics or quadratic program
solvers. Such “classical” optimisation methods are usually considerably faster
than pure evolutionary optimisation of these parameters, although they might
be more prone to getting stuck in local minima. However, there are cases where
“classical” optimisation methods are not applicable, for example when the neu-
ral model or the objective function is non-differentiable (e.g. see section 4.2).
Still, the main application of evolutionary optimisation in the field of neurocom-
puting is adapting the structures of neural systems, that is, optimising those
parts that are not altered by the learning algorithm. Both in biological and
technical neural systems the structure is crucial for the learning behaviour—the
evolved structures of brains are an important reason for their incredible learn-
ing performance: “development of intelligence requires a balance between innate
structure and the ability to learn” [4]. Hence, it appears to be obvious to apply
evolutionary methods for adapting the structure of neural systems for technical
applications, a task for which generally no efficient “classical” methods exist.

Encodings in Structure Optimisation. A prototypical example of evolutionary
optimisation of a neural architecture on which a learning algorithm operates
is the search for an appropriate topology for a multi-layer perceptron NN, see
[74, 27, 21] for some real-world applications. Here, the search space ultimately
consists of graphs. When using EAs to design NN graphs, the key questions are
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how to encode the topologies and how to define variation operators that operate
on this representation. In terms of section 2, operators and representation both
determine the search distribution and thereby the neighbourhood of NNs in the
search space. Often an intermediate space, the phenotype space P, is introduced
in order to facilitate the analysis of the problem and of the optimisation process
itself. The fitness function can then be written as f = f’ o ¢, where ¢ : G — P
and f’ : P — F. The definition of the phenotype space is to a certain degree
arbitrary (note that the freedom in the definition of the phenotype space equally
exists in evolutionary biology [46] and is not restricted to EAs). The probabil-
ity that a certain phenotype p € P is created from a population of phenotypes
strongly depends on the representation and the variation operators. When the
genotype-phenotype mapping ¢ is not injective, we speak of neutrality, which
may considerably influence the evolutionary process (in the context of NNs, e.g.
see [31]). We assume that P is equipped with an extrinsic (i.e. independent of
the evolutionary process) metric or at least a consistent neighbourhood measure,
which may be defined in relation to the function of the individual. In the case
of NNs, the phenotype space is often simply the space of all possible connection
matrices of the networks. Representations for evolutionary structure optimi-
sation of NNs have often been classified in “direct” and “indirect” encodings.
Coarsely speaking, a direct encoding or representation is one where (intrinsic)
neighbourhood relations in the genotype space (induced by Pgx) broadly corre-
spond to extrinsic distances of the corresponding phenotypes. Note that such a
classification only makes sense once a phenotype space with an extrinsic distance
measure has been defined and that it is only valid for this particular definition
(this point has frequently been overlooked because of the implicit agreement
on the definition of the phenotype space, e.g. the graph space equipped with
a graph editing distance). This does not imply that both spaces are identical.
In an indirect encoding the genotype usually encodes a rule, a programme or
a mapping to build, grow or develop the phenotype. Such encoding foster the
design of large, modular systems. Examples can be found in [42, 24, 17, 64, 65].

4 Trends in Combining EAs and Neural Computation

4.1 Multi-objective Optimisation of Neural Networks

Designing a neural system usually requires optimisation of several, often conflict-
ing objectives. This includes coping with the bias-variance dilemma or trading
off speed of classification vs. accuracy in real-time applications. Although the
design of neural systems is obviously a multi-objective problem, it is usually
tackled by aggregating the objectives into a scalar function and applying stan-
dard methods to the resulting single-objective task. However, this approach
will in general not find all desired solutions [11]. Furthermore, the aggregation
weights have to be chosen correctly in order to obtain the desired result. In
practice it is more convenient to make the tradeoffs between the objectives ex-
plicit (e.g. visualise them) after the design process and select from a diverse set
of systems the one that seems to be most appropriate. This can be realised by
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“true” multi-objective optimisation (MOO). The MOO algorithms approximate
the set of Pareto-optimal tradeoffs, that is, those solutions that cannot be im-
proved in any objective without getting worse in at least one other objective.
From the resulting set of systems the final solution can be selected after optimi-
sation. There have been considerable advances in MOO recently, which can now
be incorporated into machine learning techniques. In particular, it was realised
that EAs are very well suited for multi-criterion optimisation and they have
become the MOO methods of choice in the last years [10, 12]. Recent applica-
tions of evolutionary MOO to neural systems address the design of multi-layer
perceptron NNs [1, 2, 36, 74, 21, 8] and support vector machines (SVMs) [29].

4.2 Reinforcement Learning

In the standard reinforcement learning (RL) scenario, an agent perceives stim-
uli from the environment and decides based on its policy which action to take.
Influenced by the actions, the environment changes its state and possibly emits
reward signals. The reward feedback may be sparse, unspecific, and delayed.
The goal of the agent is to adapt its policy, which may be represented by (or
be based on) a NN, such that the expected reward is maximised. The gradient
of the performance measure with respect to NN parameters can usually not be
computed (but approximated in case of stochastic policies, e.g. see [70, 43]).
Evolutionary algorithms have proven to be powerful and competitive methods
for solving RL problems [50, 28, 41]. The recent success of evolved NNs in game
playing [9, 16] demonstrates the potential of combining NNs and evolutionary
computation for RL. The possible advantages of EAs compared to standard RL
methods are that they allow—in contrast to the common temporal difference
learning methods—for direct search in the space of (stochastic as well as deter-
ministic) policies, are often easier to apply and are more robust with respect to
the tuning of the meta-parameters (learning rates, etc.), can be applied if the
function approximators are non-differentiable, and can also optimise the under-
lying structure of the function approximators.

Closely related is the research area of evolutionary robotics devoted to the
evolution of “embodied” neural control systems [52, 44, 55, 72]. Here promising
applications of the principle of co-evolution can be found.

4.3 Evolving Network Ensembles

Ensembles of NNs that together solve a given task can be preferable to monolithic
systems. For example, they may allow for a task decomposition that is necessary
for efficiently solving a complex problem and they are often easier to interpret
[66]. The population concept in EAs appears to be ideal for designing neural
network ensembles, as, for example, demonstrated for classification tasks in [45,
8]. In the framework of decision making and games, Mark et al. [47] developed
a combination of NN ensembles and evolutionary computation. Two ensembles
are used to predict the opponents strategy and to optimise the own action.
Using an ensemble instead of a single network ensures to be able to maintain
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different opponent experts and counter-strategies in parallel. The EA is used
to determine the optimal input for the two network ensembles. Ensembles of
networks have also been shown to be a superior alternative to single NNs for
fitness approximation in evolutionary optimisation (see section 4.7). In [3§]
network ensembles have been optimised with evolution strategies and then used
in an evolutionary computation framework as meta-models. Besides the increase
in approximation quality an ensemble of networks has the advantage that the
fidelity of the networks can be estimated based on the variance of the ensemble.

4.4 Evolutionary Optimisation of Learning

Neural networks are often chosen as approximation or classification models be-
cause of their learning and generalisation behaviour. Therefore, it seems reason-
able to target an improvement of these capabilities using evolutionary compu-
tation. This includes the optimisation of learning rules (e.g. see [6, 7]). Further,
the neural structure can be evolved to improve the learning behaviour [25, 26].
In [25], networks that learn to learn are evolved for efficiently solving classes of
toy as well as real-world problems. The authors propose different ways to realise
this additional generalisation property called 2"? order generalisation.

4.5 Optimising Kernel Methods

Adopting the extended definition of structure as that part of the adaptive sys-
tem that cannot be optimised by the learning algorithm itself, model selection of
kernel-based methods is a structure optimisation problem. For example, choos-
ing the right kernel for a SVM is important for its performance. When a pa-
rameterised family of kernel functions is considered, kernel adaptation reduces
to finding an appropriate parameter vector. These “hyperparameters” are usu-
ally determined by grid search, which is only suitable for the adjustment of very
few parameters, or by gradient-based approaches. When applicable, the latter
methods are highly efficient albeit susceptible to local optima. Still, often the
gradient of the performance criterion w.r.t. the hyperparameters can neither be
computed nor accurately approximated. Therefore, there is a growing interest
in applying EAs to model selection of SVMs. In [18, 60, 29], evolution strate-
gies (i.e. EAs tailored for real-valued optimisation) were proposed for adapting
SVM hyperparameters, in [14, 39, 49, 19] genetic algorithms (EAs that represent
candidate solutions as fixed-length strings over a finite alphabet) were used for
SVM feature selection.

4.6 Computational Neuroscience and Brain-inspired Architectures

There are only a few applications of evolutionary computation in brain science
[3, 63, 69, 32, 58], although evolutionary “analysis by synthesis” guided by neu-
robiological knowledge may be a powerful tool in computational neuroscience.
The challenge is to force artificial evolution to favour solutions that are reason-
able from the biological point of view by incorporating as much neurobiological
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knowledge as possible in the design process (e.g. by a deliberate choice of the
basic system structure and constraints that ensure biological plausibility).

In the field of brain inspired vision systems [20, 73] evolutionary algorithms
have been used to optimise the structure of the system (i.e. feature banks or
hierarchical layers) and to determine a wide variety of parameters. Evolution-
ary algorithms have been successfully applied to the Neocognitron structure
[71, 53, 67], which was one of the first hierarchical vision systems based on the
structure of its biological counterpart [20]. More recent work employed evolu-
tion strategies to optimise the nonlinearities and the structure of a biologically
inspired vision network, which is capable of performing a complex 3D real world
object classification task [61, 62]. Schneider et al. employed a directly coded evo-
lutionary optimisation that was capable of performing well in a 1800-dimensional
search space. In a second experiment evolutionary optimisation was successfully
combined with local unsupervised learning based on a sparse representation.
The resulting architecture outperformed other methods like SVMs.

4.7 Neural Networks as Meta-models

Linear or quadratic models or in more general terms meta-models have been
used in experimental optimisation since many years to approximate experimental
data. The optimisation is then carried out using the model as the objective
function. After the optimisation algorithm has converged, the optimal solution
is tested in an experiment. If necessary the response surface model is rebuild
and the optimisation process is started again. More recently, systems have been
subject to optimisation that are so complex that even simulations are very time-
consuming and costly. Therefore, the meta-model framework has been applied
to optimisation in general and in particular to EAs. Although first approaches
to combine fitness approximation with EAs are relatively old [23], it is only
in the last couple of years that the field has received wider attention, see [35]
for a review. It has been revealed that the strategy to keep the update of the
meta-model and the optimisation process separate is not advisable, since the
optimisation is easily misled if the modelling quality is limited (which is often
the case in practical applications). Jin et al. [37] have suggested to use the meta-
model alongside the true objective function to guarantee correct convergence.
Furthermore, the use of NNs as models is particularly advantageous because
of their online learning ability. Thus, the approximation quality of NNs can
continuously be improved during the optimisation process (e.g. [37, 57, 54]).
In [27, 22] evolutionary structure optimisation methods have been successfully
used to improve NNs which are in turn used as approximation models in an
evolutionary design optimisation framework.

5 Conclusion

Finding an appropriate neural system for a given task usually requires the solu-
tion of difficult optimisation problems. Evolutionary algorithms (EAs) are well
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suited to solve many of these problems, especially when higher order optimisa-
tion methods cannot be applied. Therefore, we argue that EAs should be a tool
for the design of neural systems that is as common as gradient descent methods.

At the same time there is plenty of room for synergies that go beyond the
use of evolutionary computation as structure optimisation methods for neural
systems. Some of these have been highlighted in the trend list which we pre-
sented in this paper. We can only speculate which one might have the highest
potential for a long-lasting contribution. However, it seems that bringing evo-
lutionary computation together with brain science bears many advantage both
on a technical level (e.g. for data analysis) and on an explanatory level (e.g. as
a means to better understand the brain structure).
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