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Abstract. This work aims at reviewing some of the main issues that
are under research in the field of Hopfield networks. In particular, the
feasibility of the Hopfield network as a practical optimization method is
addressed. Together with the current results, the main directions that de-
serve ongoing analysis are shown. Besides, some suggestions are provided
in order to identify lines that are at an impasse point, where there is no
evidence that further research will be fruitful, or topics that nowadays can
just be considered as historically interesting.

1 Introduction

Since its inception in 1982 [16], the neuronal paradigm generically known as the
Hopfield network has literally been the subject of thousands of papers. Indeed,
it is worth realizing that many important contributions do not even mention
the name “Hopfield”, since there are several related models, extensions and
particularizations, such as Cohen-Grossberg networks [12], the Takeda-Goodman
model and so on. However, assuming some lack of rigour, we freely use the
term “Hopfield networks”, as a synonym for recurrent, fully-connected networks.
Further, when these recurrent networks are considered from the viewpoint of
dynamical systems theory, their main feature is the existence of a Lyapunov
function. The presented study of the Hopfield network is certainly restricted
and biased since a comprehensive review would probably fill the available pages
tenfold. Admittedly, the selection of topics is guided by our own interests and can
be concisely described as the application of Hopfield networks to optimization.
This is the reason for the surname “and Tank” of the title, from the other
author of the first reported optimization usage of this paradigm [41], where an
instance of the Travelling Salesman Problem (TSP) is solved. Again, this is not
a restriction but an illustrative term, and some of the presented models are far
apart from the original work by Tank and Hopfield. Hence, we are ready to state
one of the things that we intend to know about Hopfield networks:

1. Is the Hopfield network capable of performing combinatorial optimization?
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Despite the time passed since the model was first presented and the intense re-
search effort, this is still an open question. The controversy on the optimization
efficiency of Hopfield networks arose soon after its outset [47], and has accompa-
nied the paradigm since then. The main objection of Wilson and Pawley was the
impossibility to reproduce Tank and Hopfield’s results. It is now agreed that this
was partly due to the omission of a number of important implementation details
in the original proposal of the algorithm. Anyway, this criticism persuaded many
researchers to lose interest in the Hopfield paradigm, both in the optimization
and the neural network scientific communities. Yet, a significant number of con-
tributions have been filled with partly affirmative answers to the above question.
Most of them suggest additional heuristics to the Hopfield methodology, so that
more or less successful solutions to the TSP have been provided. This progress
can be tracked in the review [36] (and references therein), since no dramatic
advance has occurred since its publication. We will not pursue a taxonomy of
these empirical advances since the TSP itself has been severely questioned as
the appropriate benchmark for Hopfield networks [35]. Besides, our interest is
focused on methodological issues that are applicable to a wide range of problems
and have been somewhat disregarded in the literature. In particular, we empha-
size the need for explicitly describing the model that is used in each study, since
there are several formulations with different dynamical properties: the discrete
formulation [16], the continuous Hopfield formulation [17] and the continuous
Abe formulation [1]. We explain the advantages and limitations of each model,
when applied to combinatorial optimization, based upon a rigourous theoretical
analysis. In particular, it is shown that the discrete formulation is severely lim-
ited, thus in the rest of the paper only continuous models are addressed. This
continuity is twofold, since, on one hand, states (neuron outputs) extend over a
continuous interval; and, on the other hand, continuous networks are modelled
by Ordinary Differential Equations (ODEs), thus time is also continuous.

Even when restricting to theoretical studies on the Hopfield network, the
list of references is still overwhelming, most of them dealing with the stability
of the network as a dynamical system. As mentioned above, this theoretical
interest on the Hopfield network is not coherent with its limited reputation as a
practical computational algorithm, which is in sharp contrast to other neuronal
paradigms. Consider, for instance, the Self Organizing Map (SOM), proposed
by Kohonen [24, 25] the same year as Hopfield networks were introduced. The
practical usefulness of the SOM is unarguable [26], whereas its theoretical anal-
ysis has faced great difficulties. Some advances have indeed been presented [13]
that support the empirical results, and this “samosien” approach1 has provided
considerable inspiration both to the title and the content of the present con-
tribution. Therefore, it is important to determine lines of theoretical research
that contribute to attain efficient optimization techniques by means of Hopfield
networks. In contrast, some other directions may be less fertile for practical
applications. Hence we can state another aspect that we intend to know :

1The authors of [13] belong to the SAMOS research group.



2. Which theoretical stability analysis is still worth undertaking?

Needless to say, it is not our intention to suggest that some published work is
useless. Rather, our aim is to draw the attention of researchers who are interested
in optimization to recent theoretical advances that could reveal fruitful.

The application of Hopfield networks is not limited to combinatorial opti-
mization. As mentioned above, the Hopfield network presents some difficulties
when dealing with the TSP. It can be argued that these objections are exten-
sible to the whole domain of combinatorial optimization. However, this is not
a reason to disdain the usefulness of Hopfield networks, since other interesting
applications certainly exist. Indeed, based upon previous work, we can affirm
that we know that:

3. The Hopfield network is competent at solving other classes of optimization
problems.

In particular, we present a reformulation of parametric identification of dynam-
ical system as an optimization problem, which is solved by a modified Hopfield
network. The resulting network possesses variable weights so that existing sta-
bility analysis are not applicable. Both theoretical and empirical results support
the efficiency of the presented neural estimator.

The success of an algorithm is not separable from the feasibility of its im-
plementation. Concerning neural networks, hardware implementation has wit-
nessed some remarkable developments [48], but software simulation is still the
first-choice method for practical application. In the case of Hopfield networks,
some transformation is needed in order to represent continuous networks, mod-
elled by ODEs, on digital computers. Discretization of continuous models is the
subject of numerical analysis, thus a successful implementation of Hopfield net-
works will be served by the choice of an appropriate method, among numerical
methods for ODEs, together with the correct selections of step size. In other
words, we intend to know :

4. Which numerical method preserves the optimization capability after dis-
cretization in the best possible way?

Numerical analysts have determined that some families of methods can preserve
qualitative properties of the underlying ODE, such as stability or hamiltonian
structure. These results are within the framework of an ongoing research that
joins numerical analysis and dynamical systems theory [38]. Since optimization
is a direct consequence of stability, this theory provides a hint for the search of
an optimal numerical method for implementing Hopfield networks.

In view of the persistent bad reputation of Hopfield networks, some re-
searchers have considered that the original model, based on ODEs, is exhausted,
and several extensions have been proposed. With this respect, we intend to
know :

5. Which alternative proposals will result in practical optimization algorithms?



Generally speaking, most of these extended models result from replacing ODEs
by functional differential equations, whose solutions are formed by functions,
rather than vectors. In particular, this infinite-dimensional framework leads
to Stochastic Differential Equations, Delay Differential Equations and Partial
Differential Equations. We can only speculate on the practical applicability of
these models, since their computational usage is almost unexplored.

Section 2 deals with the first three questions of the enumeration above: we
describe the diverse formulations of Hopfield networks and present some theoret-
ical results that suggest their relative merit, as long as optimization is concerned.
The application of Hopfield networks to parametric identification is presented
too. In Section 3, the discrete-time network is studied, considered as a numerical
method that discretizes the continuous network, i.e. the fourth question is ad-
dressed. Several extensions of the original model, as stated in the fifth question,
are the subject of Section 4. Finally, a summary of the things that we know,
and those that we intend to know in the future, puts an end to the paper in
Section 5.

2 The continuous Hopfield network and its application to
optimization

2.1 Different formulations for combinatorial optimization

The application of Hopfield networks to optimization problems is based upon
the existence of a Lyapunov (also called energy) function, which decreases while
the network spontaneously evolves (see [15, 22] for background on dynamical
systems and stability). Hence, the stable states of the network coincide to the
minima of the energy function. Therefore, optimization is achieved by making
the target function identical to the Lyapunov function. Although the original
Lyapunov function presented by Hopfield was quadratic, the addition of higher-
order terms was later proposed [34, 32]. Nowadays, limiting a contribution to
first order networks is a severe restriction, so that general multilinear functions
should be considered:

V (s) = −
r∑

q=1

∑
(i1,i2...iq,iq+1)∈Cq+1

Nn

wi1 i2...iq iq+1 si1 si2 . . . siq
siq+1 +

n∑
i=1

bi si (1)

where Cq
Nn

represent the set of all combinations of q elements chosen from the set
Nn of the first n natural numbers. Then, a particular combinatorial optimization
problem is stated by the target function V , together with the constraints |si| = 1.
The crucial contribution by Hopfield consists in constructing a gradient system
by defining the network input as the gradient of the target function:

neti(s) =
∂ V

∂ si
=

r∑
q=1

∑
(i1,i2...iq)∈Cq

Nn−{i}

wi i1 i2...iq
si1 si2 . . . siq

− bi (2)



However, from this basic setting, there are several ways to formulate the dynam-
ics of the network.

The discrete Hopfield formulation [16] proceeds both in discrete time and
with discrete states si ∈ {−1, 1}:

si (t + 1) = sgn (ui (t + 1)) ; ui (t + 1) = neti(s(t))

The fact that the states of this system always satisfy the constraints |si| = 1 is,
at first sight, an advantage. However, it has been proved both with theoretical
and empirical arguments, that the non-convexity of the state space results in a
high probability of falling into local minima [45, 21]. Therefore, to the best of
our knowledge, the discrete formulation should be considered exhausted, unless
a dramatic advance occurs.

The continuous Hopfield formulation [17], used in the first optimization ap-
plication [41], is defined by an ODE:

d ui

d t
= −ui + neti ; si(t) = tanh

(
ui(t)

β

)
(3)

where β is an adjustable parameter. The Lyapunov function of this system is
not exactly equal to that given in Equation (1), but rather it needs the addition
of an integral term: β

∑
i

∫ si

0
argtanh(x) dx. This is a significant drawback, since

the stable states no longer fulfill the constraint |si| = 1. Methods to overcome
this difficulty have been proposed [44, 21], based upon some strategy to drive β
towards zero, while at the same time preserving the smoothness of the hyperbolic
tangent or, what is the same, the convexity of the state space. These strategies
result in an additional computational cost, and further research is needed in
order to determine whether they are computationally affordable in large-size
problems.

The continuous Abe formulation [1] is also defined by an ODE:

d ui

d t
= neti ; si(t) = tanh

(
ui(t)

β

)
(4)

Many successful applications make use of this formulation (e.g. [40, 29]) although
sometimes the Hopfield formulation is misleadingly referenced instead. The Abe
formulation has the advantage that its Lyapunov function exactly matches the
multilinear form of Equation (1), hence the vertices of the unitary hypercube
(i.e. the points s that satisfy |si| = 1) are stable. However, there exist interior
equilibria that, if stable, would result in spurious solutions. It has been proved
that an interior fixed point is unstable, unless the hessian matrix of the function
V evaluated at such a point is singular, thus resulting in a non-hyperbolic equi-
librium [8]. Therefore, two directions of further research are open: determining
whether these non-hyperbolic equilibria actually appear in practical applications
and, if they do so, completing the study of their stability.

Despite the need for rigourous theoretical analysis, any eventual method-
ological advance should be confirmed by simulations and comparison to other



techniques. Hence an useful companion of theory would be the construction of a
problem repository, which serves as benchmark, instead of the deprecated TSP
[35]. Many interesting applications are reported in [36] and also the solution of
diophantine equations has been attempted with Hopfield networks [19].

2.2 Alternative directions of theoretical analysis

Apart from the mentioned directions of theoretical research (evolution strategies
for the Hopfield formulation and non-hyperbolic equilibria of the Abe formula-
tion) other aspects of Hopfield networks have also been addressed in a huge
number of contributions, e.g. [11]. Most of them aim at weakening the con-
ditions for stability given by Hopfield for first order networks: no self-weights
and symmetry of the weight matrix. Undoubtedly, these contributions provide
significant advances to the mathematical theory of Hopfield networks. However,
their profitability for optimization applications is questionable, due to the lim-
ited practical importance of the symmetry + no self-weights restriction. Consider
that the weights that appear in the network input, Equation (2), are the coeffi-
cients of the multilinear target function V , given by Equation (1). For each set
of indices {i1, i2 . . . iq}, there exists only one term wi1 i2...iq

si1 si2 . . . siq
. Then,

two different components of the gradient have different sets of variables, but
the same weight wi1 i2...iq

, thus justifying the symmetry, even in higher-order
networks. With regard to the absence of self-weights, it is explained by the fact
that no variable is raised to an exponent greater than one in V . This is due
to the constraints |si| = 1, since for every power sn

i with n > 1, sn
i = sn−2

i

holds. Therefore, the symmetry + no self-weights restriction leads to no loss of
generality, as long as combinatorial optimization is concerned.

A severe drawback of Hopfield networks for optimization is the appearance
of local minima. Even worse, since the constraints are often included as penalty
terms of an unconstrained target function, local minima often lead to unfeasible
points of the problem. Local minima are an unavoidable consequence of the
gradient nature of Hopfield networks, since the states follow a steepest descent
trajectory. Hence, a way to overcome this difficulty is the inclusion of some hill-
climbing heuristic [36]. In Section 4 below, some stochastic techniques, which
could result in local minima avoidance, will be commented on. Within a deter-
ministic setting, the computation of the basins of attraction of stable states is
a promising approach, although still at its infancy. The relation of these contri-
butions to optimization stems from the random selection of the initial state: the
larger the domain of attraction of a stable fixed point, the more probable the
convergence towards that point. In other words, if successive runs are executed
with random initial states, the global minimum is achieved sooner if its basin is
largest. Some explorations have been presented that aim at relating the basins
to the networks weights [5, 10], but no applicable relation has been obtained up
to now, let alone a practical algorithm to enlarge the basin of the global opti-
mum. Hence, in our opinion, no evidence supports the optimism of the authors
that claim that the local minima problem is solved [39].

An interesting idea is the search for Lyapunov functions different from the



standard one, given by Equation (1). This advance could be aimed at either
expanding the range of possible applications or solving the same problem with
less computational cost. The paths opened by some contributions [23, 20] have
not been continued, and this field remains mostly unexplored.

2.3 Optimization beyond combinatorics: parametric identification

In view of the difficulties that the application of Hopfield networks to combi-
natorial optimization encounters, one can wonder whether other optimization
problems can be more easily solved. Among the long list of other interest-
ing problems that can be thought of, Hopfield networks have been applied to
parametric identification of dynamical systems [9], which is formulated as op-
timization. A remarkable feature of the resulting network is that weights vary
with time, so the conventional stability proofs are no longer valid, and a new
stability analysis must be performed [6]. A brief and somewhat simplified de-
scription of this application follows. The interested reader will found a related
model applied to non-parametric estimation in [31].

System identification can be defined as establishing a model of the system, by
observing its behaviour. In robotics, the model stems from physical laws, where
the numeric values of some parameters may be unknown. Besides, in the models
of rigid mechanical systems, the parameters enter linearly, so the model equation
can be written as y = Aθ, where θ is the unknown -possibly time variable- vector
of parameters, y is a vector and A is a matrix. Both y and A depend on the
eventual inputs p, the states x of the system and their derivatives dx

dt . Then,
identification is accomplished by parameter estimation, which, in turn, can be
considered as the minimization of the prediction error e = A θ̂ − y as a function
of the estimated parameters θ̂. A straightforward calculation shows that this
target function is, indeed, quadratic:

V =
1
2
|e|2 =

1
2

θ̂� A� A θ̂ − θ̂� A� y + V1 (5)

where V1 is neglected, since it does not depend on θ̂. Therefore, this equation
is identical to the standard Lyapunov function of a first order Hopfield network,
Equation (1) with q = 1. The network states s represent the estimations θ̂ and
the weights are obtained by comparing Equations (1) and (5):

W = −A� A ; b = −A� y

In the cited references [9, 6], both theoretical and empirical results are presented
to show the efficiency of this neural estimator. Yet we are engaged in further
research in order to build a complete adaptive control module for robotic systems.

As mentioned above, the Hopfield network that is applied to parameter es-
timation possesses time-variable weights. The stability analysis of such non-
autonomous systems with Lyapunov methods is far from easy. Instead, some
advances could result from the application of input-output methods, well known
in control engineering and systems theory [43]. The input-output approach has



been successfully applied to recurrent learning algorithms [37] and its application
to Hopfield networks is promising, although much work remains to be done.

3 The discrete Hopfield network for optimization

First of all, it must be emphasized that our usage of the term “discrete” only
stands for “discrete-time”, whereas the neuron states are not discrete since,
as mentioned above, networks with binary-valued neurons are severely limited.
Hence, the basic model results by replacing the differential du

dt by a finite differ-
ence ∆u, either in the Hopfield formulation, Equation (3):

ui(t + 1) = neti(s(t)) ; si(t + 1) = tanh
(

ui(t + 1)
β

)

or in the Abe formulation, Equation (4):

ui(t + 1) = ui(t) + neti(s(t)) ; si(t + 1) = tanh
(

ui(t + 1)
β

)

Both practical and theoretical results have been presented concerning the dis-
crete network. On one hand, among papers with problem-dependent heuristics
and empirical results, the discrete model is often disregarded or even unmen-
tioned. This is rather disappointing, since computer simulation of a continu-
ous model always implies some discretization process. For instance, the fact
that the energy may increase has been attributed to a mixture of discretization,
updating rule and presence of self-weights [14], whereas the influence of these
factors should be clearly distinguished. On the other hand, some theoretical
contributions are inspiring regarding mathematical methods [42] but, as in the
continuous case, we are not particularly interested in generalizations such as
those concerning non-symmetric weights.

The discrete network can be considered as a numerical method that solves
the ODE of the continuous model. This is a promising approach, since the ap-
plication of the continuous network to optimization is better studied. Generally
speaking, the discrete model would then have the structure:

ui(t + 1) = f(s(t);∆ t) ; si(t + 1) = tanh
(

ui(t + 1)
β

)
(6)

where the function f depends on the choice of numerical method and ∆t is the
step size. Both f and ∆t should be adjusted so that the stable states of the dy-
namical system defined by Equation (6) are the same as those of the continuous
network. Interestingly, the design of numerical methods that mirror qualitative
properties of ODEs is an active line of research [38], but no efficient numerical
method is yet known that always preserves a Lyapunov function. When the
Hopfield formulation is discretized by means of the Euler rule, the eventual ap-
pearance of periodic solutions that destroy convergence has been proved [46] (see
also references therein). Stability can be guaranteed when neurons are updated



sequentially, but this asynchronous activation is not computationally efficient.
Other proposed conditions so that the Lyapunov function is preserved [46, 30]
are not applicable when β is too small. Hence, the analysis of the discretization
of the Hopfield formulation is hindered by the usage of strategies that drive β
towards zero, which are needed in combinatorial optimization. In the case of the
Abe formulation, also the Euler rule leads to periodic solutions, unless a small
enough step size is selected, and the analysis has been extended to higher-order
networks [7]. It seems that the only way to guarantee the stability of the dis-
crete model, regardless the step size, is to select an alternative numerical method.
Some explorations with implicit methods have been reported in this direction
[2, 3, 4], however the design of a numerical method that both is computationally
efficient and preserves the Lyapunov function is an open fundamental question.

4 Generalized models of Hopfield networks

Several extensions of the original continuous model have been proposed, among
which the stochastic networks are presented first. The introduction of random-
ness has long been known in the form of Boltzmann machines, where the sigmoid
function is replaced by a stochastic decision. The aim of randomness was to pro-
vide some way to escape from local minima, but the convergence of these models
turns out to be too slow. Instead, we here consider the addition of stochastic
noise to the weights [18]. In the case of the Hopfield formulation, Equation (3),
the following model results from considering randomness:

d ui = (−ui + neti) dt + σ(u) d Wt

where σ is a noise intensity matrix and Wt is a Brownian motion. The stochastic
network preserves the Lyapunov function of the continuous network and it has
been suggested as a model of hardware implementations, but it could also serve as
a hill-climbing algorithm to escape from local minima. The stochastic extensions
of the Abe formulation and higher order networks deserve further research.

Another proposed extension results from the introduction of delays in the
first-order Hopfield formulation, leading to the following model:

d ui

d t
= −ui(t) +

∑
j

wij sj(t − τij) + bi

where τij is a delay associated to the connection from neuron j to neuron i. A
complete stability analysis of models with delays has recently been published
[28], whereas the discretization of delayed networks has also been studied [30].

Finally, a sort of network with infinite neurons results from the introduction
of partial derivatives [33]:

∂ u(x, t)
∂ t

= −u(x, t) + tanh
(∫

Ω

w(x, y)u(y, t) dy

)

for x belonging to some domain Ω. The stability of this and a similar model [27]
has been proved, but its computational usefulness is unexplored.



5 Conclusions

This paper reviews the main topics concerning the application of Hopfield net-
works to optimization. Both current results and promising directions for further
research have been presented. With regard to the continuous Hopfield network,
in principle, it is capable of performing combinatorial optimization, but some
issues still need study: evolution strategies for the Hopfield formulation and non-
hyperbolic equilibria of the Abe formulation. Besides, the determination of the
basins of attraction and its relation to local minima, as well as the obtention of
different Lyapunov functions, are research programmes that are worth undertak-
ing. The Hopfield network is also capable of solving other classes of optimization
problems, and an efficient application to parametric identification of dynamical
systems is presented. The analysis of the resulting non-autonomous network
could be enhanced with the use of input-output methods. The discrete network
can be attained by the application of a numerical method to the continuous
model. Since the Euler rule does not preserve stability, it has been suggested
that implicit numerical methods are more appropriate, but results are far from
conclusive. Proposed extensions of the original network include stochastic dif-
ferential equations, models with delays and partial differential equations, whose
importance for optimization applications remains unexplored.

Hopfield networks comprise a variety of mathematically appealing systems,
which highlight the most interesting dynamical and numerical aspects of neural
computing. Through an interdisciplinary research, they can also become an
efficient computational method for optimization.
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