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Abstract. An implementation of the recently proposed concept of the
Liquid State Machine using a Spiking Neural Network (SNN) is trained
to perform isolated word recognition. We investigate two different speech
front ends and different ways of coding the inputs into spike trains. The
robustness against noise added to the speech is also briefly researched. It
turns out that a biologically realistic configuration of the LSM gives the
best result, and that it performs very well for the task of speech recogni-
tion.

1 Introduction

The Liquid State Machine is a recent computational model whose structure is
depicted in Figure 1. The liquid consists of a recurrent network of non-linear
interacting computational nodes (in this case spiking neurons [1], but others are
possible: see [2], [3] or [4]) with an internal state. The set of all the internal
states of these nodes form the liquid state. This liquid state serves as input
to a memoryless readout function that extracts the actual output of the LSM.
A more complete description of this powerful computational framework can be
found in [5].

We tested this LSM for the rather practical task of recognizing isolated spo-
ken digits. In this context, we investigated two different speech front ends: Mel
Frequency Cepstral Coefficients (MFCC), a technique often used in traditional
speech processing systems, and the Lyon Passive Ear model, a biologically re-
alistic model of the human inner ear. We also tested three different ways of
coding the output of these speech processing steps into spike trains: the classi-
cal Poisson spike coding, the BSA filter coding scheme , and a Leaky Integrate
& Fire (LIF) neuron. Finally we briefly investigate the robustness of our word
recognizer against noise added to the speech inputs.

In Section 2 we describe the parameters for the experiments we performed.
Next, in Section 3 we introduce the two speech front ends we tested, and in
Section 4 we discuss the three spike coding schemes that were used. In Section 5
we present and discuss the results of our measurements. In Section 6 we briefly
investigate the performance of the system under different noisy circumstances.
Finally, in Section 7, we formulate some conclusions about our research.
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Fig. 1: The liquid state machine.

2 Experimental setup

The experiments for this publication were done using the Matlab LSM toolbox,
described in [6]. The parameters of the neurons were inspired by biological
data and are as follows (taken from [7]): membrane time constant 30 ms, firing
threshold 15 mV, reset voltage 13.5 mV and an absolute refractory period of 3
ms for excitatory neurons and 2 ms for inhibitory neurons. A more complete
description of the neuron parameters is given in [7].

The network connections in the liquid are randomly generated, with a
probability of a connection being placed between neurons a and b defined as

Pconn (a, b) = C · e
−D2(a,b)

λ2 with D (a, b) the Euclidean distance (in 3D space)
between the two neurons. Both the average amount of connections as the av-
erage distance between connected neurons are controlled by the parameter λ,
which in our case has the value 2. This parameter setting generates mainly local
connections.

Because of the stochastic construction of the liquids and their connections,
there exists some variation between the performance of different liquids of the
same size. We therefore simulated different liquids of the same size and calcu-
lated the average performance for a given size, but we were sometimes hindered
by memory limitations. Since a liquid of a given size can still have a varying
number of internal connections, we were not always able to evaluate every liquid
size the same number of times.

We trained and tested our LSM using a subset of the TI46 speech corpus
consisting of ten different utterances of the digits ‘zero’ to ‘nine’, spoken by five
different speakers. Of this set, 300 samples were used for training and 200 for
testing.

The readout function used in our experiments consists of a linear classifier
that maps the liquid state onto the output classes using a weight matrix w, i.e.
C [x (t)] = Θ [w · x (t) + w0]. The weight matrix is found using pseudo matrix
inversion. Previous research [8] has shown that this simple readout function
performs better in this case than more advanced classifiers such as a Fisher
discriminant or a pool of parallel perceptrons. The readout function computes
an output based on the liquid state every 20 ms, and the final output of the
LSM based on a given input is determined using the winner take all principle



after the full input sample is presented.
We measured the performance of the LSM for this specific task as the Word

Error Rate (WER): the fraction of incorrectly classified words as a percentage of
the total number of presented words: WER = 100 · Nnc

Ntot
with Nnc the number of

incorrectly classified samples, and Ntot the total number of samples presented.

3 Speech coding

3.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) is the de facto standard prepro-
cessing technique in the field of speech recognition. The MFCC are calculated as
follows: (1) the sample data is windowed using a hamming window and a FFT
is computed, (2) the magnitude is run through a so-called mel-scale1 filter bank
and the log10 of these values is computed, (3) a cosine transform is applied to
reduce the correlation among the individual features. The result is the so-called
cepstrum.

3.2 Lyon Passive Ear

The Lyon Passive Ear model [9] is a model of the human inner ear or cochlea,
which describes the way acoustic energy is transformed and converted to neural
representations. The algorithm models the most important properties of the
cochlea and hair cells. The model consists of a filter bank which closely resembles
the selectivity of the human ear to certain frequencies, followed by a series of
half-wave rectifiers (HWRs) and adaptive gain controllers (AGCs) both modeling
the hair cell response.

Note that this form of preprocessing is computationally more intensive than
the use of a MFCC front end. It takes about three to five times as long to
compute on a conventional processor.

4 Spike coding

The communication between the neurons in the liquid is done through the use of
spikes. This means that the output from the speech processing front ends needs
to be converted from analog values into a series of spike trains. The coding of
stimuli into spike trains has been researched extensively [10, 1, 11], and several
methods have been proposed, such as time to first spike coding, population
coding and correlation coding.

In this publication we compare three different methods for extracting the
spike trains from the analog outputs of the speech front ends. First, we use a
standard Poisson coding, whereby the spike trains are generated by interpreting
the analog outputs of the speech processing as instantaneous firing rates. The
spikes are generated by a Poisson process based on these firing rates.

1A mel-scale is a non-linear transformation of the frequency domain to model the human
selectivity to certain frequency bands.
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Fig. 2: Performance results for the MFCC front end (left) and the Lyon front
end (right) using three different spike coding schemes. Note the difference in
scale on the WER axis between both figures.

Secondly, we use a LIF neuron as a way to code the analog values into spike
trains: this biologically realistic model of a real neuron takes an input current
(an analog value) as input, and produces spikes in response to this current. This
coding scheme is computationally the most intensive due to the complexity of
the model.

Finally, we use BSA [12] to code the speech processing output into spike
trains, a coding algorithm that assumes the decoding of the spike trains will
take place using a linear filter. This is the case for our implementation of the
LSM: the liquid response (i.e. the set of all spike times of the neurons in the
liquid) is decoded into the liquid state (analog values) using an exponential filter,
before being fed into the readout function.

5 Results

The results of our measurements are given in Figure 2. It appears that the stan-
dard MFCC technique is not well suited to be used as a speech front end for the
LSM. Performance is poor and for two coding schemes (LIF and Poisson) does
not even increase for larger liquids. It can also be noted that the performance
for the BSA-coding is worse on the training set than the others, but is better
on the test set. This suggests that the LSM generalizes better using BSA in
the case of an MFCC front end. The Lyon Passive Ear front end performs far
better: the larger liquids achieve an average WER of 3% using the LIF coding
scheme, and the best liquid attained a WER of 0.5%.

For comparison, we present two other speech recognition systems tested with
a comparable dataset. Sphinx4 is a recent speech recognition system developed
by Sun Microsystems [13], using Hidden Markov Models (HMMs) and an MFCC
front end. When it is applied to the full TI46 database, a word error rate (WER)
of 0.168% is achieved. The best LSM from our experiments achieved a WER of
0.5%. While slightly worse than the state-of-the-art, we point out that the LSM
offers a number of advantages over HMMs. HMMs tend to be sensitive to noisy
inputs and are usually biased towards a certain speech database.



An additional comparison can be made by looking at the results described in
[14]. There, a recurrent SNN is used with so-called Long Short-Term Memory
(LSTM). It is trained for the same subset of TI46. A WER of 2% was achieved.

We can conclude that the LSM passes the test of isolated word recognition
very well and rivals the performance of standard HMM based techniques and
other kinds of SNN solutions.

6 Noisy inputs

We also investigated the noise robustness of the LSM by adding three different
types of noise commonly found in day to day environments: speech babble (B),
white-noise (W) and car interior noise (C) from the NOISEX noise database.
We trained a random liquid of 1232 neurons on clean data, added noise to the
test set at sound levels of 30, 20 and 10 dB and tested the performance with
this corrupted test set. The data was preprocessed using the Lyon Passive Ear
model and coded into spike trains using BSA.

We also cite the best results from [15], which describes the Log Auditory
Model or LAM as a speech front end specifically designed to be noise-robust
which is tested using a HMM based speech recognition system. However, the
dataset consists in this case of isolated digits from the TIDIGITS database, which
is not identical but still comparable to our dataset. Therefore, the results in table
1 are indicative and not quantitative. Also, note that here the performance is
expressed as a recognition score to allow easy comparison.

Clean 30 dB 20 dB 10 dB
C LSM 95.5% 89.5% 87% 84.5%

LAM 98.8% 98.6% 98.8% 98.6%
B LSM - 91.5% 89.5% 82%

LAM - 98.4% 93.2% 72.5%
W LSM - 88% 82.5% 79.5%

LAM - 98.4% 95.7% 72.7%

Table 1: The robustness of the LSM against different types of noise.

It turns out that the LSM has good noise-robustness. The HMM performs
better for low noise levels, but the performance of the LSM decays more gradually
with increasing noise levels.

7 Conclusion

In this paper we used the SNN interpretation of the LSM to the task of isolated
word recognition with a limited vocabulary. We explored two speech front ends:
the standard MFCC technique, and the biologically realistic Lyon Passive Ear
model. We used three different ways of generating the spike trains: the simple
Poisson coding, the BSA filter coding scheme and the biological LIF model. We



also investigated the sensitivity to different types of noise commonly found in
real-world applications.

Our results show that the LSM is well suited for this task. We have found that
the performance is far better when the speech is preprocessed using a biologically
realistic model of the human cochlea than using the classic MFCC speech front
end, especially when the spikes are generated using a realistic model of a neuron.
In addition to good speech recognition performance on clean test data, our results
show a very good robustness of the LSM for different types of noise. Results
from [5] show that this noise-robustness is also observed with other types of
input than speech.
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