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Abstract. Biologically plausible excitatory networks develop a sta-
ble synchronized pattern of activity due to synaptic refractoriness (short
term depression). The introduction of spike-timing-dependent plasticity
(STDP) modifies the weights of synaptic connections in such a way that
synchronization of neuronal activity is considerably weakened. By chang-
ing network connections to include long-distance connections according a
power law distribution (’small world’ topology) we found that synchro-
nization could be much better sustained, despite STDP influence.

1 Introduction

The occurrence of synchronous oscillatory activity seems to play an important
role in the development of the mammalian CNS [1]. Imaging techniques and
electrophysiological patch-clamp measurements in cell cultures showed that neo-
cortical neuronal networks develop the same kind of synchronous oscillatory
activity in a similar pace as in the intact brain [2]. When synapses are formed,
neurons start to show spontaneous activity, first by bursting independently and
later by showing simultaneous network spiking. The number of neurons that
fire synchronously increases with time. Neurons which do not participate do
not survive in culture conditions [3]. These results underline the interrelation-
ship between synaptic development and network activity development. In [4]
we have investigated intrinsic conditions and parameters for networks where os-
cillatory activity is emerging in single cells, and how to control the network
externally. It has been shown that a mechanism of synaptic depression is a nec-
essary requirement to render an episodic nature of activity-dependent network
excitability by spontaneous activity [5] that is observed in vitro [6]. Here we
combine these models with a biologically plausible hebbian learning algorithm,
spike-timing-dependent plasticity (STDP), where the modification function de-
pends on the time difference of pre- and postsynaptic action potentials [7]. The
simplified models for STDP derived from neurophysiological experiments may
improve synchronization in long distant areals [8], and is probably a key element
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when cultured networks are arbitrarily conditioned to oscillatory behavior [9].
Effects like STDP or short-term depression are recently being implemented in
VLSI devices [10]. ’Small world’ network topologies [11] are simple, flexible, and
reminiscent of the connectivity patterns in the brain with an abundance of local
intercellular connections and a few have long distance connections. The impact
of long-distance connections in epileptic network synchronization of activity was
demonstrated in various neuronal models [12].

2 Methods

Networks of neurons were modelled using the NEURON environment [13]. Sin-
gle neurons were represented as electrical models with two compartments for
the purpose of decoupling synaptic integration and impulse generation dynam-
ics in different compartments [14]. This model reflects some electrical effects
caused by size parameters (for a study of the effects of geometrical structure of
a neuron contributing to signal propagating properties, see [15].) The dynamics
of the membrane potentials Vm is defined by Cm

d
dtVm = Em−Vm

Rm
+

∑
k Isyn +

Vm−Vm(soma)
Ra

and Cm
d
dtVm = Em−Vm

Rm
+ Vm−Vm(dend)

Ra
+ IHH + Iζ for dendrite

and soma, respectively, describing the dendritic synaptic input integration and
the somatic action potential elicitation. Em−Vm

Rm
is the leaky current, IHH is a

current resulting from active Hodgkin-Huxley conductions (standard HH equa-
tions [16]) and

∑
k Isyn is the sum of all k synaptic currents. Iζ is a discrete

stochastic component, which causes spontaneous elicitation of action potentials,
with highly variable intervals between spikes, erratically but Poisson-distributed
[17]. Iζ is implemented as a current pulse, activated at distinct time points
driven by a Poisson-process. The time of an action potential is determined as
the first point in the rising phase that exceeded 0 mV. Synapses: Synapses
were simulated as an alpha-shaped postsynaptic conductance with refractori-
ness (differential STD effects): Empirical pharmacological intervention in cell
cultures have shown a period of synaptic depression after each burst activity
[6]. This is obviously caused by a consumption of some synaptic ressource (e.g.
exhaustion of neurotransmitter). By extending the point-process described in
[18], the postsynaptic membrane conductances now are also determined by the
amount of available transmitter and the synaptic currents are defined by a dif-
ferential system τg

d
dta = −a, τg

d
dtg = −g + a, and τm

d
dtm = 1 − m. If an

isolated presynaptic event arrives, a peak conductance of magnitude weight oc-
curs at time τg after the event, m ⇐ m − mspk and a ⇐ a + ew, provided that
m ≥ mthr. The synaptic current then amounts to Isyn = g(Vm − E) see Fig.
1(A). Synaptic latency was adjusted via parameter τm to endure about 85ms. In
simulation, synaptic currents are calculated with initial values a(0) = g(0) = 0,
m(0) = 1. An example with a test spiketrain is depicted in Fig 1 (A). If m is
below a critical threshold mthr spikes are not transmitted. Synaptic plasticity:
The synaptic weights (peak conductance gmax) are changed during simulation,
using the learning algorithm of synaptic weight changing dependent on time
difference of pre- and postsynaptic cells (STDP), the relative weight change is



calculated as in [7], F (∆t) = { A+e∆t/τ+ if∆t<0

A−e−∆t/τ− if∆t≥0
, see Fig 1. The change of peak

conductance is determined by the spike time difference of pre- and postsynaptic
cells, exponentially decaying for longer times, with potentiation and depression
rates, respectively. Network: A network section of n = 400 neurons was assem-
bled, arranged on the planar area of 1 mm2 (a simple representation allowing
reproducing culture dish plating). Assuming the network structure to be ho-
mogenous (and prevent overlying of neuronal positions), the cells positions were
de-clustered and scattered uniformly over the section’s area using the neural-gas-
algorithm according to [19], thus minimizing the spatial entropy of the cellular
distribution. Connectivity: Each neuron was connected to its k (distance l)-
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Fig. 1: A Simplified alpha-model of synapse with refractoriness: conductance of
synapse g, transmitter m and transmitter threshold mthr and transmitter con-
sumption mspk per spike. Top panel: incoming spiketrain, middle panel: trans-
mitter m and threshold mthr, bottom panel: resulting synaptic conductance. B
Weight modification function of STDP [7]. C Connectivity probability function.
Top panel: gaussian distributed locally coupled network, bottom panel: power
distributed ’small world’ network.

nearest neighbors. The distance l is distributed with probability ρ according
to a power-law. This kind of connectivity is consistent both with published
anatomical data [21] as well as with theoretical models [11]. Connections are
synaptic couplings (model see above) and the conduction time was calculated
from the euclidean distance between pre- and postsynaptic cells. The conduc-
tion velocity was assumed to be 0.5m

s ([20]), which leads to synaptic delays for
each pre-post-pair. Synchronization measures: Perfect or nearby perfect syn-
chronization can easily be detected by the raster plot of neuron activity, when
all neurons fire synchronously (e.g. within a few milliseconds). A mathematical
measure to know whether all neurons are located in a network fire synchronously
is needed. The ’near spike’ measure for neuron i with j generated spikes. For
each neuron i, each spike j, the distances to all other spikes are weightened by a

gaussian: zij = 1
m

∑m
p=1

1
ni

∑ni

k=1
1

σ
√

π
e
(ti

j−tp
k)2

2σ2 for each neuron leads to a syn-

chronization index of z = 1
mn

∑i=1
m

∑j=1
n zij . Frequency and synchronization

of the network activity were analyzed in 10ms-epochs. Average firing frequency
was determined by binning the rasterplot in 10ms slices (Fig. 1 (C)).



3 Results and Discussion

Neurons were initialized to a resting membrane potential of -65 mV. To initiate
spontaneous activity in the network, we triggered single, non-repetitive action
potentials by applying driving currents (Iζ), at time points randomly chosen from
a poisson distribution (mean firing rate timing parameter λ, 0.1nA, lasting 10
ms), were applied. Fig. 2 (D)(E) shows the weight development of synchroniza-
tion from initial values. The unfolded intrinsic behavior depended on coupling
parameters. Two out of three known activity modi described by Netoff et al
[12] in circular networks could clearly be distinguished: ’normal’ and ’bursting’
activity. A ’seizing’ mode was extremely unstable in our open network topology.
In Fig. 2 the network activity is descending from ’bursting’ mode (in which
the oscillatory frequency is determined by synaptic refractoriness) into ’normal’
mode.
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Fig. 2: Influence of Network structure on synaptic development. A Network
topology, B Rasterplot of neuron activity, C mean firing frequency, D distribu-
tion of weights, E connection distance vs. connection weight strenght. The ratio
of the power-law distributed long-distance connections (see Fig. 1 (C)) amounts
to 0, 50%, and 100% for the respective simulation runs.

While the network behavior remained stable, if plasticity was switched off
[4], the presence of STDP re-distributed synaptic weights, from homogeneously
initial values into Poisson-law distributed weights (Fig. 2). This effect was
independent of small-world topology. Interestingly, STDP weakened the syn-
chronization of neuronal activity, probably by mostly non-causal coincidences
[7]. Networks having ’small world’-topologies can better sustain synchronous
behavior under same conditions. This can be seen in relation to [12]. However,
it does not seem to exist a direct correlation between a connections length and
weight Fig. 2 (E). Varying the other model parameters in realistic ranges (e.g.
number of neurons) had no qualitative effect on the results. The values of the



model parameters used in the simulations, except those mentioned otherwise in
the text, are given in Table 1.

4 Conclusion

Here we investigated the impact of STDP and ’small world’ topologies on the
activity dynamics of excitatory networks. In our simulations STDP tended to
desynchronize neuronal activity, redistributing weights of connections to fit a
Poisson-law. The transformation of the locally coupled network to a network
with ’small world’ topology by adding a few long connections prevented desyn-
chronization without affecting weight distribution. These results suggest that
a small world network topology contribute to maintain synchronized activity in
neuronal networks, in spite of destabilizing mechanisms like synaptic plasticity.

Symbol Description Value Unit
n number of neurons 400 −
Iζ current,duration 0.1,10 nA,ms

λ mean of poisson dist 0.001dt−1 ms−1

diamsoma somatic diameter 10 µm
Lsoma somatic length 10 µm

diamdend dendritic diameter 5 µm
Ldend dendritic length 50 µm

ρ ratio of long distance connections varied −
l connection length 0.1 mm
k number of postsyn. cells 3 −

A+ STDP potentiation factor 0.15 −
A− STDP depression factor 0.15 −
τ+ STDP pot. time constant 20.0 ms
τ− STDP depr. time constant 20.0 ms
cvel conductance velocity 0.5 m

s = mm
ms

τg monoexp. rise/decay param 3.0 ms
τm decay param for refractoriness 50.0 ms

mthr synaptic ressource threshold 0.8 −
mspk consumption per spike 0.75 −

E reversal potential 50.0 mV
winit initial synaptic weight 0.00165 -
tstop simulation time 1000 ms
dt integration width 0.05 ms

Table 1: Used parameters.
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