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Abstract. This work studies the influence of random noise in the ap-
plication of Hopfield networks to combinatorial optimization. It has been
suggested that the Abe formulation, rather than the original Hopfield for-
mulation, is better suited to optimization, but the eventual presence of
noise in the connection weights of this model has not been considered
up to now. This consideration leads to a model that is formulated as
a stochastic differential equation. In the stochastic setting, the analysis
reveals that the model is stable, and the states converge towards an at-
tractive set, assuming the noise intensity is bounded. The relation of the
attractor with that of the deterministic model requires further study.

1 Introduction

Hopfield networks comprise a variety of related models, that have become an
appealing tool for combinatorial optimization [9]. They are dynamical systems,
due to the existence of recurrent connections, and their stability is deduced from
the definition of an appropriate Lyapunov function. Optimization with Hopfield
networks is accomplished by matching a multilinear target function with the
Lyapunov function. Among these networks, the performance of the continuous
Hopfield formulation [3] is controversial, since it requires evolution strategies
[10, 6] in order to attain a feasible solution. Instead, the Abe formulation [1]
has been claimed to be better suited to optimization [6]. Recently, it has been
argued the importance of studying whether the network still approaches some
limit set in the presence of random environmental noise, and this analysis has
been performed for the Hopfield formulation [4]. In the present work, we develop
a similar stochastic analysis for the Abe formulation, establishing the conditions
for convergence, and identifying the topics that require further study in order
to guarantee the optimization capability of the Abe model, subject to random
perturbations.
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2 Hopfield networks for optimization

2.1 Deterministic case

The continuous Hopfield network [3] can be defined as a dynamical system whose
states si(t) are defined by the following differential equation:

d ui

d t
= −ui + neti ; si(t) = tanh

(
ui(t)

β

)
; i = 1, . . . , n

In the sequel, we restrict ourselves to first order networks, although more power-
ful models have been proposed [5]. Besides, we omit the explicit dependence of
time, for brevity. The parameter β regulates the slope of the hyperbolic tangent
and the potential ui of the i-th neuron is driven by the linear input neti:

neti =
n∑

j=1

wij sj − bi (1)

where wij is the weight of the connection from neuron j to neuron i and bi is
the bias of neuron i. From a dynamical viewpoint, the stability of this system
results from the existence of a Lyapunov function:

V (s) = −1
2

n∑
i=1

n∑
j=1

wi j si sj +
n∑

i=1

bi si + β

n∑
i=1

∫ si

0

arg tanh(x) dx.

Optimization with Hopfield networks is accomplished by matching the Lyapunov
function with the target function. In combinatorial optimization problems, the
target function is multilinear, quadratic in the simplest case, hence the presence
of the integral term in the Lyapunov function V is a severe drawback. Besides,
stable equilibria in Hopfield networks do not belong to the set of vertices of
the hypercube, whereas a feasible solution s in an optimization problem requires
|si| = 1 for all i. Note that the conditions wij = wji (symmetry) and wii = 0 (no
self-weights), imposed by Hopfield in order to prove stability, appear naturally
when the weights are regarded as the coefficients of the target function. A
new formulation was proposed by Abe [1], which has been claimed to be better
suited to optimization [6], since the structure of its energy function coincides
with the form of the target function in optimization problems. Further, interior
fixed points are unstable, hence the state converges to a vertex of the hypercube
which is a feasible solution of the problem. The Abe formulation is defined by
the following system of ordinary differential equations:

d ui

d t
= neti ; si(t) = tanh

(
ui(t)

β

)
; i = 1, . . . , n (2)

where neti is defined by Equation (1). Since the feasible solutions correspond to
|si| = 1, which is mapped to ui = ±∞ by the hyperbolic tangent, the analysis



is simplified when expressing the system with the single set of variables si, by
means of the chain rule of differentiation:

d si

d t
=

1
β

(
1 − s2

i

)
neti ; i = 1 . . . n.

Assuming a symmetric weight matrix W and no self weights, the proof of the
function V below being a Lyapunov function results from the positiveness of the

derivative of the hyperbolic tangent and the identity
∂ V

∂ si
= −d ui

d t
:

V (s) = −1
2

n∑
i=1

n∑
j=1
j �=i

wij si sj +
n∑

i=1

bi si = −1
2
s� W s + b� s (3)

2.2 Stochastic stability of the Abe formulation

The question arises as to the influence on the behaviour of the network when the
presence of random noise in weights and biases is considered. This noise could
model either inaccuracies in the components of a hardware implementation or
the discretization error due to a computer simulation. The analysis of this situ-
ation has already been dealt with, for the Hopfield formulation [4], and our work
follows the same track as this reference, but some assumptions are weakened
thanks to the adoption of the Abe formulation. Besides, not only the stability of
the system is guaranteed, but also the same Lyapunov function as in the deter-
ministic case exists. From the computational point of view, this is a favourable
property, that results in optimization of the target function being preserved un-
der stochastic perturbations. Hence, our aim is to prove that the function given
by Equation (3) is a Lyapunov function of the system defined in Equation (4)
below, where the presence of random noise is considered. This purpose requires
a new, stochastic, setting [8, 7]. Let (Ω,F , P ) be a complete probability space,
on which an m-dimensional Brownian motion or Wiener process W is defined
W = {W (t), t ≥ 0} and let F = (Ft, t ≥ 0) denote the corresponding nat-
ural filtration, i.e. Ft is the σ-algebra generated by the processes W (s) with
0 ≤ s ≤ t. Then an additive stochastic perturbation, as in [4], can be considered
in Equation (2), resulting in the following stochastic differential equation:

d ui = neti dt + σ(u) dWt (4)

where σ(x) = (σij(x))n×m is the noise intensity matrix. As in the deterministic
case, it is convenient to rewrite Equation (4) in terms of the si, which results
from the stochastic analogue of the chain rule, the general Itô formula:

d si =
1
β

(1 − s2
i ) d ui − 1

β2
si (1 − s2

i )
(
σ�(u)σ(u)

)
ii

d t,

=
1
β

(1 − s2
i )

{[
neti − si

β

m∑
k=1

σ2
ik (u)

]
dt +

m∑
k=1

σik (u) dWk(t)

} (5)



where u must be regarded as a symbol that stands for u(t) = β argtanh(s(t))
and x� denotes the vector transpose. Indeed this formulation will be useful to
prove our results in a simpler way than the one used for Hopfields SDE’s. Then,
the differential operator L associated to Equation (5) is defined by:

L =
1
β

n∑
i=1

(1 − s2
i )

(
neti − si

β

m∑
k=1

σ2
ik (u)

)
∂

∂si

+
1

2β2

n∑
i=1

n∑
j=1

(1 − s2
i )(1 − s2

j )

(
m∑

k=1

σik(u)σjk(u)

)
∂2

∂sisj

Hence, for V defined in Equation (3), we obtain

LV (s) = − 1
β

n∑
i=1

(1 − s2
i )net2i

− 1
2β2

∑
i�=j

(1 − s2
i )(1 − s2

j )wij

m∑
k=1

σik(u)σjk(u)

+
1
β2

n∑
i=1

si(1 − s2
i )neti

m∑
k=1

σ2
ik (u)

(6)

In the deterministic case, i.e. when σ ≡ 0, as recalled in Section 2.1 above, it
has been proved [2] that, under some assumptions, the state s converges to the
vertices: |si| = 1. Therefore, our aim is to prove, in the stochastic case defined
by Equation (5), that the system still exhibits some kind of convergence to some
set K, to be determined.

Guided by the deterministic case, where the condition for stability is
dV

dt
≤ 0,

it must first be determined whether we can assure LV ≤ 0. This is indeed
possible since, for instance, σ(.) can be assumed to satisfy the following relation:

|σ(u)|2 ≤
β

n∑
i=1

(1 − s2
i )net2i

max
i,j

|wij | + max
i

|neti|

where, given a matrix A, |A| =
√

trace (A�A) is its trace norm. The character-
ization of the set {s : LV (s) ≤ 0} can be summarized in the following result:

Lemma 1 Let (λi)i be the eigenvalues of the symmetric weight matrix W and
λmin = mini λi.

• If λmin ≥ 0 and if neti ≥ 0 ∀i, σ has to be chosen according to (σ�σ)ii ≤
β neti in order to satisfy LV ≤ 0.

• If λmin ≤ 0 and if neti ≥ −|λmin|
2

, then σ has to be chosen according to

(σ�σ)ii ≤ 2β net2i
|λmin| + 2neti

in order to satisfy LV ≤ 0.



• Otherwise, the condition LV ≤ 0 results regardless the value of the random
noise σ.

The proof proceeds by straightforward computations and is omitted. Further
analysis is expected to transform these conditions into a criterion usable in prac-
tical applications, which is an ongoing task.

Contrarily to the deterministic case, the condition LV ≤ 0 alone is not
enough to guarantee the convergence to the limit set {s : LV (s) = 0}, hence we
need some additional technicalities to discuss the stochastic stability of the Abe
formulation.

Since (st)t is an Itô diffusion with operator L, then (see for instance Theorem
8.7 in [8]) V satisfies the following equation:

V (s(t)) = V (s0) +
∫ t

0

LV (s(r))dr + Mt

where Mt is defined by

Mt = −
∫ t

0

n∑
i=1

neti

m∑
k=1

σik (u) dWk(t) = −
m∑

k=1

∫ t

0

Hk(s(r)) dWk(r)

with Hk(s(r)) =
n∑

i=1

neti σik (u).

Therefore let us define the limit set K:

K = {s = s(t, ω) : LV = 0} ∩ {s = s(t, ω) : Hk(s) = 0 ,∀ 1 ≤ k ≤ m} (7)

With this notation, we can now state the main result of the paper, which is
the analogue of Theorem 2.1 in [4], for the Abe formulation:

Theorem 1 Assume LV (s) ≤ 0. Then the set K defined in Equation (7) is not
empty and for any initial value s0 ∈ [−1, 1], the solution s(t; s0) of Equation (5)
satisfies

lim inf
t→∞ d(s(t; s0),K) = 0 a.s.

with d(y,K) = min
z∈K

|y − z| and “a.s.” stands for “almost sure convergence”, i.e.

with probability one. Moreover, if for any s ∈ K, there exists a neighbourhood of
s such that every point r �= s of this neighbourhood satisfies V (r) �= V (s), then,
for any initial value s0,

lim
t→∞ s(t; s0) ∈ K a.s. (8)

The proof requires an involved procedure and is omitted, since it follows the
same steps as Theorem 2.1 in [4], but in a simpler way since no extra restriction
is required on the transfer function tanh. This is a consequence of adopting the
bounded states |s(t, ω)| ≤ 1 instead of the variables u, since then, the Lyapunov

function V is bounded: |V (s)| ≤ 1
2

n∑
i=1

n∑
j=1

|wij | +
n∑

i=1

|bi|.



3 Conclusions

In this contribution, the presence of random noise in the weights of the con-
tinuous Hopfield network, in the Abe formulation, is considered. The stability
of the stochastic model is shown, inspired by similar analysis on the Hopfield
formulation. Besides, weaker assumptions are here required due to the adoption,
as system states, of the s variables, which are confined to the unitary hypercube.
The used Lyapunov function is identical to that of the deterministic case, which
also matches with the multilinear target function of combinatorial optimization
problems. Consequently, the system states converge, with probability one, to-
wards some limit set K, which is a subset of the fixed points of the deterministic
case. From a computational point of view, the work exposes a sort of robustness
of the Abe formulation, since combinatorial optimization is expected even in the
presence of random perturbations, as long as this noise is bounded.

The work raises several fundamental questions that deserve further study.
First, the analysis of the bound on the noise intensity should lead to usable
practical criteria that allow to determine whether a particular network is stable.
Secondly, it should be desirable to ascertain the exact form of the limit set K and
to compare it to the set of stable fixed points of the deterministic case; in partic-
ular, determining whether interior fixed points are stable, as proved by previous
work in the deterministic case, is crucial for optimization, since these points are
unfeasible. Finally, the influence of discretization on a computational imple-
mentation requires careful consideration, since numerical methods for stochastic
differential equations are concerned.
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