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Abstract. We propose a new algorithm which is based on a topological
map model and dedicated to mixed data, with numerical and binary com-
ponents. The algorithm computes directly the referent vectors, as mixed
data vectors sharing the same interpretation with the observations. The
method is validated on a real data related to the ocean colour domain.

1 Introduction

The topological map proposed by Kohonen [8] uses a self-organization algorithm
(SOM) which provides quantification and clustering of the observation space.
More recently, new models of topological maps dedicated to specific data were
proposed in [2, 4, 5, 6, 7]. Some of these models are based on a probabilistic
formalism and a learning procedure to maximize the likelihood function of the
data set, the others are quantization methods. In this paper we proposed a
topological self organizing map for analysing mixed (numerical and binary) data.
It is a quantization model which provides a consistent set of prototypes whose
particularity is to be interpreted (prototypes and data belong to the same space
and have a meaningful interpretation). In section 2, we present the model and
the iterative algorithm. In section 2.2, we validate the model on a real problem
for which the observations are mixed data (numerical and binary).

2 Mixed Topological Map (MTM)

Let A = {zi, i = 1..I} be the learning data set where each observation zi =
(z1

i , z2
i , ..., zd

i ) is made of two parts: numerical part zr
i = (z1r

i , z2r
i , ..., zn

i ) (zr
i ∈

Rn) and binary part zb
i = (z1b

i , z2b
i , ..., zm

i ) (zb
i ∈ βm = {0, 1}m). With these

notations a particular observation zi = (zr
i , z

b
i ) is a mixed vector (numerical and

binary) of dimension d = n + m. As for the classical topological maps, we
assume that we have regular grid C, on which we define distance δ(c, r), as the
length of the unique shortest path on the grid (as undirected graph) between
the cells c and r. The neighborhood system can be defined by a monotonically
decreasing kernel function K (K ≥ 0 and lim

|x|→∞
K(x) = 0). We define the

mutual influence of two cells c and r by K(δ(c, r)). For each cell c of the grid,
we associate a referent vector wc = (wr

c,w
b
c ) of dimension d, where wr

c ∈ Rn



and wb
c ∈ βm. We denote by W the set of the referents vectors, by Wr the set

of the numerical part and by Wb the binary part of the referent vectors. In the
following section we present a new model of topological map dedicated to mixed
data. The associated learning algorithm is derived from the batch version of the
Kohonen algorithm dedicated to numerical data [8] and the BinBatch algorithm
which is dedicated to binary data [7]. In this algorithm, the similarity measure
and the estimation of the referent vectors are specific in each data set: it is the
Euclidian distance with the mean vector in the numerical case and the Hamming
distance with the median center in the binary case.

2.1 Minimization of the cost function

As the classical topological maps we propose to minimize the following cost
function [1, 8].

E(φ,W) =
∑

zi∈App

∑

r∈C

K(δ(φ(zi), r))||zi − wr||2 (1)

Where φ assigns each observation z to a single cell in C. In this expression
||z − wr||2 is square of the Euclidian distance. Since for binary vectors the
Euclidian distance is no more than the Hamming distance H, then the Euclidian
distance can be rewritten by: ||z− wr||2 = ||zr −wr

r ||2 + H(zb,wb
r). Using this

expression, the cost function is

E(φ,W) =
∑

zi∈App

∑

r∈C

K(δ(φ(zi), r))Deuc(zr
i ,w

r
r)

+
∑

zi∈App

∑

r∈C

K(δ(φ(zi), r))H(zb
i ,w

b
r)] (2)

= Esom(φ,Wr) + Ebin(φ,Wb)

Where
Esom(φ,W) =

∑

zi∈App

∑

r∈C

K(δ(φ(zi), r))||zr
i − wr

r ||2 (3)

is the classical cost function used by the Kohonen Batch algorithm [8], and

Ebin(φ,W) =
∑

zi∈App

∑

r∈C

K(δ(φ(zi), r))H(zb
i ,w

b
r)] (4)

is the cost function used in BinBatch algorithm [7]. The minimization of the
cost function (1), is made using an iterative process with two steps:

• Assignment step: assuming that W is fixed, we have to minimize E(φ,W)
with respect to φ. This leads to use the following assignment function:
∀z, φ(z) = arg minc(||zr − wr

c ||2 + H(zb,wb
c)).

• Optimization step: assuming that φ is fixed, this step minimizes E(φ,W)
with respect to W in the space Rn × βm. The minimization of the cost



function (1) leads to minimize the function Esom(φ,W) (3) in Rn and
Ebin(φ,W) (4) in βm. It is easy to see that this two minimizations allow
to define:

– the numerical part wr
c of the referent vector wc as the mean vector as:

wc =

X
zi∈A

K(δ(c, φ(zi)))z
r
i

X
zi∈A

K(δ(c, φ(zi)))
,

– the binary part wb
c of the referent vector wc as the median center of the

binary part of the observations zi ∈ A weihted by K(δ(c, φ(zi))). Each
component wb

c = (wb1
c , ..., wbk

c , ..., wm
c ) is then computed as follows: wbk

c =8>><
>>:

0 if
hP

zi∈A K(δ(c, φ(zi)))(1 − zbk
i )

i
≥hP

zi∈A K(δ(c, φ(zi)))z
bk
i

i

1 otherwise

,

The minimization of E(φ,W) is run by iteratively performing the two steps. At
the end wc, which shares the same code with the observations can be decoded
in the same way, allowing a symbolic interpretation of binary part of referent
vectors. The nature of the topological model reached at the end of the algo-
rithm, the quality of the clustering and those of the topological order induced
by the graph greatly depend on the neighborhood function K. In practice, as
for traditional topological map we use smooth function to control the size of
the neighborhood as KT (δ(c, r)) = exp(−δ(c,r)

T ). Using this kernel function, T
becomes a parameter of the model. As in the Kohonen algorithm [8], we repeat
the preceding iterations by decreasing T from an initilal value Tmax to a final
value Tmin.

2.2 Experiments on Ocean colour

In the following we present some experiments to illustrate the convergence
of the Mixed Topological Map (MTM) algorithm dedicated to mixed data and
we discuss the interesting aspect of the aproach. We deal with a real problem
concerning the ocean colour domain. We first present the data. We then consider
the result of MTM learning. Finally we give a comparison to SOM learning.

2.2.1 The data set

The spectral values of light absorption by algal populations are strongly depen-
dent on the pigment composition of the phytoplankton assemblage and therefore
contain information on their taxonomic composition. We believe that using the
MTM algorithm with adequate qualitative criteria will help to strengthen these
differences. Data are made of samples collected during ten cruises, in various
seasons and various areas of the world ocean [3]. A sample zi = (z1

i , z2
i , ..., z40

i ) is
compounded both with numerical components zr

i = (z1r
i , z2r

i , ..., z31r
i ) and with

binary categorical attributes zb
i = (z1b

i , z2b
i , ..., z9b

i ) :



• zr
i is a 31 component vector corresponding to the coding of a sample ab-

sorption spectrum. The first component z1r
i stands for the amplitude of the

spectrum, the 30 others (z2r
i , ..., z31r

i ) for the slopes of the spectrum. All com-
ponents of zr

i are normalised between 0 and 1.
• zb

i is a nine-dimensional vector which represents 3 categorial variables:
the Size(Small, Medium, Large), the Water Type (Poor, Medium, Rich) and the
Chlorophyll B Proportion (Weak, Normal, Strong). A zi stands for a sample of
ocean water. In this sample, numerous phytoplankton cells with various sizes
can be represented. For an ocean water sample, we establish the Size categorial
variable by choosing the modality represented by more than 50%. Thus a sample
can be represented by (0,0,0) meaning that the ratio is never greater than 50%.

The database (2163 data points) is finally split at random in two sets: the
learning set App (1728 data,80% of the total data set) and the test set Test (435
data,20% of the total data set).

2.2.2 Application of the MTM algorithm

In this part we illustrate the convergence of the MTM algorithm on a 10 × 10
map. The figure 1 presents the categorical components and some numerical
components for the referent vectors. Moreover, some biological characteristics
can be retreived by the MTM map.
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Fig. 1: These 12 pictures represent the different components of the 10 × 10 prototypes. The

three pictures in the upper left side of the figure stands for the numerical components (max

amplitude and 2 spectrum slopes). The 9 other pictures represent all the binary components

(white stands for “1” and black for “0”).

The amplitude of the spectrum covaries with the water type. This can be ob-
served when looking at the max amplitude map (top left corner) and the water
type categorical variable (right of the lower line). The map presents a well or-
ganized topological order. The use of categorical variables allows to retrieve an
order linked with these variables : for exemple “Large Size” data are located in
the same corner as a compact cluster.

In table 1, we compare, for the “Size” categorial variable, the labels of the MTM
map referent vectors to the result of the majority vote realized on each neuron
subset of observations. Clearly the results are coherent and stable for the gen-
eralisation.



Adding binary components to numerical data moves away data belonging to
different classes even though their numerical components are close.

Small (Learn)

¬Small Small

C¬Small 78.8% 3.1%
CSmall 0.0% 18.1%

Small (Test)

¬Small Small

C¬Small 81.4% 2.3%
CSmall 0.0% 16.3%

Medium (Learn)

¬Med. Med.

C¬Med. 73.0% 1.4%
CMed. 0.0% 25.6%

Medium (Test)

¬Med. Med.

C¬Med. 68.7% 3.2%
CMed. 0.9% 27.1%

Large (Learn)
¬Large Large

C¬Large 78.4% 7.9%
CLarge 0.7% 13.0%

Large (Test)
¬Large Large

C¬Large 79.5% 7.8%
CLarge 0.5% 12.2%

Table 1: Confusion matrix for the Size categorial variable (Learn and Test). C∗ and C¬∗
stands for the MTM classification where ¬∗ signifies that the ratio of * (* = small, medium

or large) particles is less than 50%

2.2.3 Coherence between numeric and binary components

In this section, we test the robustness of the MTM map to the missing data.
As the knowledge of the 3 categorial data require a lot of biological analysis we
project the data according to their numerical components only (the binary part
is not used). For each observation of the learning set we assign the observation
to its “nearest numerical neuron”. Then the cells are labelled according to the
categorial part of their captured spectra (each cell computes the median center
of its observations). Figure 2 shows, for the size variable, the original MTM map
(component of the referent vectors, left) and the results of the labelling process
for the learning set (middle) and the validation test (right).
When we project the zr

i we loose the information contained in the binary data.
Figure 2 allows to conclude that the binary components are coherent with the
numerical components: the information of the categorial data can be retrieved
using only the numerical part of the observation. Clearly, patterns of the six
figures on the right correspond to the three figures on the left ones. Nevertheless,
we notice that some differences are due to the information not included in the
numerical vector.
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Fig. 2: MTM map referents with Learn and Test “Size” label.

By comparing the performances of the confusion matrix in the Tables 2 and 1,
we can estimate the accuracy of the MTM map.

Small (Learn)

¬Small Small

C¬Small 72.9% 10.5%
CSmall 6.0% 10.8%

Small (Test)

¬Small Small

C¬Small 77.5% 10.6%
CSmall 3.9% 8.0%

Medium (Learn)

¬Med. Med.

C¬Med. 71.5% 20.8%
CMed. 1.4% 6.3%

Medium (Test)

¬Med. Med.

C¬Med. 66.7% 18.9%
CMed. 3.0% 11.5%

Large (Learn)
¬Large Large

C¬Large 77.4% 8.1%
CLarge 1.6% 12.8%

Large (Test)
¬Large Large

C¬Large 78.2% 7.6%
CLarge 1.8% 12.4%

Table 2: Confusion matrix for the Size categorial variable (Learn and Test projected on the

numerical components)



2.2.4 Contribution againt the som algorithm

In this last experiment we trained a classical Self Organizing Map (SOM). We
projected the learning and the test sets and applied a majority vote as in the
section 2.2.3. The result of their vote for the learning (left) and the test set
(right) is presented in figure 3. Clearly, the SOM map exhibit less structure,
particularly for the medium size which has not even a “winner” for the test.
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Fig. 3: SOM map Learn and Test “Size” label.

3 Conclusion

We present in this paper a new algorithm (MTM) which is based on a topological
map model and dedicated to mixed data, with numerical and binary components.
This algorithm uses simultaneously the Euclidian and the Haming distance on
the two data components to compute referent vectors with mixed components,
sharing the same interpretation of the observations. We illustrate the behaviour
of the MTM algorithm on a real data concerning the ocean colour domain. The
analysis of the result shows the possibility of the resulting Map : in topology
preserving order, in the reconstitution of binary components from the numerical
ones and in clustering.
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