
Computational Models of Intracytoplasmic
Sperm Injection Prognosis

Hui Liu1, Ash Kshirsagar1, Jessica Ku2, Dolores Lamb2,
Craig Niederberger1

1University of Illinois at Chicago, Department of Urology,
840 South Wood Street M/C 955, Chicago, Illinois 60612 USA

craign@uic.edu
2Baylor College of Medicine, Scott Department of Urology,
One Baylor Plaza Room N730, Houston, Texas 77030 USA

Abstract. Intracytoplasmic sperm injection (ICSI), a procedure in which
a single sperm is microinjected into an ovum, presents a difficult modeling
problem highly sensitive to both under- and overfitting. We modeled an
ICSI data set of 528 outcomes with a variety of clinical and laboratory
variates using linear and non-linear (neural computational) logistic regres-
sion methods and with linear and radial basis function support vector ma-
chines. Interestingly, depending on the threshold chosen to determine a
positive outcome, investigated neural computational methods yielded sim-
ilar or lower ROC AUCs than logistic regression in the test set, whereas
support vector machines yielded similar or higher ROC AUCs than those
of logistic regression and the investigated neural computational models.

1 Introduction

Van Steirteghem’s 1992 report that a single sperm injected into the cytoplasm
of the egg resulted in pregnancies in cases where in-vitro fertilization (IVF) had
failed revolutionized the treatment of the infertile couple.[5] The technique was
termed intracytoplasmic sperm injection, or ICSI. Whereas traditional IVF re-
quired at minimum 100,000 and preferably greater than 1 million motile sperm,
ICSI required only 1 immotile sperm to render conception and pregnancy. Preg-
nancy was possible even with necrospermia, a condition in which vital processes
within the sperm have ceased.

Prognosticating ICSI outcomes confers a unique modeling problem. As a
certain number of eggs are injected with sperm, the embryologist is highly inter-
ested in predicting when fertilization will fail entirely, an infrequent but highly
significant case. As fertilization failure is rare, models which predict all eggs will
fertilize yield high classification accuracy but low ROC AUCs. Overfitting in
models prognosticating fertilization failure presents significant difficulty. Like-
wise, embryologists are interested in predicting whether the fertilization rate will
exceed 25%, below which fertilization dysfunction is suggested, and above 50%,
indicating high yield.

Supported in part by Grant P01 HD36289 from the National Institutes of Health. 2S

We sought to model fertilization outcomes in ICSI with logistic regression,
support vector machines and neural computation to obtain models with high
accuracy and to minimize overfitting.

2 Data sets

Variates tracked for ICSI outcomes include maternal and paternal age, number
of ova retrieved and in various grades (immature, post-mature, degenerated, un-
used, fractured,) sperm origin (donor, husband,) source (testicular extraction,
electroejaculation, epididymal aspiration,) whether fresh or frozen, semen anal-
ysis (volume, density, motility, forward progression, total motile count,) micro-
manipulation time, ova manipulation parameters (grainy, dark center, killed,)
antisperm antibodies, DNA damage, endocrine parameters (FSH, LH, testos-
terone, estrogen, prolactin, free testosterone, IGF, DHEA-S,) reactive oxygen
parameters, leukocytes and SRY. Fertilization was defined as the number of em-
bryos reaching 2 pronuclei after incubation. Three binary modeling outcomes
were chosen to represent if any, if ≥ 25%, and if ≥ 50% of ova fertilized. Of a
database of 2177 cases, a fully populated data set of 528 exemplars was generated
which was randomly divided into modeling set of 328 and a cross-validation set
of 200 in N1/N2 fashion (the cross-validation set was independent of the mod-
eling set) with outcome frequency preserved in both subsets. The proportion of
positive outcomes in the cross validation set was 4% for if any eggs fertilized,
7% for if ≥ 25% fertilized, and 29% for if ≥ 50% fertilized.

3 Algorithms

3.1 Logistic Regression

Logistic regression may be formally considered as a neural network with a single
output node with a sigmoidal transfer function, no hidden layers and cross-
entropy error function

e(tk,a) = −tk. ∗ log[ak] − (1 − tk). ∗ log[1 − ak]. (1)

where a denotes the activation and t the target for the kth training pattern.[4]
Error minimization was achieved using the gradient descent algorithms described
in the neural computation section.

3.2 Support Vector Machines

A support vector machine is a supervised learning algorithm developed over the
past decade by Vapnik and others.[1, 7]

Given a labeled training set of � examples (�xi, yi), i = 1, . . . , �, where �xi is
the input pattern and yi is the labeled class, the vectors �xi are mapped into
a higher (maybe infinite) dimensional space by the function Φ. The support
vector machine constructs a maximal margin linear classifier in this high dimen-
sional feature space. A positive definite kernel function, k(�xi, �xj) = Φ(�x′

j).Φ(�xi),

computes inner products in the feature space, A common kernel is the Gaussian
radial basis function (RBF): k(�xi, �xj) = e−||�xi−vecxj ||2/2σ2

. Another common
kernel is the linear kernel: k(�xi, �xj) = �x′

j�xi. The SVM with a linear kernel is
thus a special case of a SVM with a RBF kernel.

The function implemented by a support vector machine is given by

f(�x) =

{
�∑

i=1

αiyik(�xi, �x)

}
− b. (2)

with b a bias parameter. To find the optimal coefficients, �α, of this expansion it
is sufficient to maximize the function,

W (�α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjk(�xi, �xj), (3)

in the non-negative quadrant,

0 ≤ αi ≤ C, i = 1, . . . , �, (4)

subject to the constraint,
�∑

i=1

αiyi = 0. (5)

C is a regularization parameter, controlling a compromise between maximizing
the margin and minimizing the number of training set errors. The Karush-Kuhn-
Tucker (KKT) conditions can be stated as follows:

αi = 0 =⇒ yif(�xi) ≥ 1, (6)
0 < αi < C =⇒ yif(�xi) = 1, (7)

αi = C =⇒ yif(�xi) ≤ 1. (8)

These conditions are satisfied for the set of feasible Lagrange multipliers, �α0 =
{α0

1, α
0
2, . . . , α

0
�}, maximizing the objective function given by equation 3. The

bias parameter, b, is selected to ensure that the second KKT condition is satisfied
for all input patterns corresponding to non-bound Lagrange multipliers. Note
that in general only a limited number of Lagrange multipliers, �α, will have non-
zero values; the corresponding input patterns are known as support vectors.
Let I be the set of indices of patterns corresponding to non-bound Lagrange
multipliers, I = {i : 0 < α0

i < C}, and similarly, let J be the set of indices of
patterns with Lagrange multipliers at the upper bound C, J = {i : α0

i = C}.
Equation 2 can then be written as an expansion over support vectors,

f(�x) =

⎧⎨
⎩

∑
i∈{I,J}

α0
i yik(�xi, �x)

⎫⎬
⎭ − b. (9)

SVMs elegantly address the dual difficulties of incurring computational and
modeling costs by translating the training set into higher-dimensional space
and exposing the learning system to the risk of finding trivial solutions that
overfit the data. SVMs avoid overfitting by choosing the maximum margin
separating hyperplane from among the many that can separate the 2 classes
in the feature space. With this modeling technique, the decision function for
classifying points with respect to the separating hyperplane only involves dot
products between points in the feature space. Because the algorithm that finds
a separating hyperplane in the feature space can be stated entirely in terms
of vectors in the input space and dot products in the feature space, a support
vector machine can locate the hyperplane without ever representing the space
explicitly simply by defining a function, the kernel function, that models the dot
product in the feature space. This technique avoids the computational burden
of explicitly representing the feature vectors.

For some data sets, the SVM may not be able to find a separating hyperplane
in feature space, either because the kernel function is inappropriate for the train-
ing data or because the data contains mislabeled examples. The latter problem
can be addressed by using a soft margin that allows some training examples to
fall on the wrong side of the separating hyperplane. Completely specifying a
support vector machine therefore requires specifying two parameters: the kernel
function and the magnitude of the penalty for violating the soft margin. The
settings of these parameters depend on the specific data to model.

3.3 Neural Computation

Canonical single hidden layer backpropagation neural networks were implemented
with hidden node number chosen to minimize overfitting by optimizing ROC
AUC in the independent cross-validation set. Final hidden node number over
which ROC AUC decayed indicating overfitting was 3. Transfer functions in all
nodes were sigmoidal with cross-entropy error as the output error function.1

The error function Ek was statistically paramaterized (weight decay) accord-
ing to:[3]

Ek(w) = e(tk,ak) +
1

2σ2
w

m∑
i=1

|w|2. (10)

where w represents the weight vector. σw = 100 for all learning trials. The
learning algorithm was classic off-line (classic batch) backpropagation alone or
with Shanno’s algorithm or conjugate gradient descent optimization.[3] Learning
was specified to be complete when the maximum weight gradient was ≤ 10−6.

4 Analysis

ROC AUC was computed statistically according to the method of Wickens’.[8]
Briefly, hit and false rates were transformed to Gaussian coordinates and lin-
early fit with errors in both coordinates according to the procedure described in

Numerical Recipes in C.[6] Goodness-of-fit p was calculated as chi-square, with
p → 1 indicating better fit.

The non-parametric method according to DeLong was used to compare model
ROC AUCs.[2]

5 Results

ROC AUC results are displayed in the following tables. ‘FR’ indicates fertil-
ization rate outcome modeled, and goodness-of-fit p−values for ROC AUCs are
displayed in parentheses. Cross-validation set ROC AUCs for logistic regression
and neural computation are shown in Table 1, and ROC AUCs for linear and
radial basis function SVMs are shown in Table 2.

FR Logistic Regression Neural Computation
>0 0.849 (0.99) 0.757 (0.67)
≥25 0.804 (0.85) 0.775 (0.81)
≥50 0.851 (0.53) 0.849 (0.99)

Table 1: Cross-validation set ROC AUCs for logistic regression and neural com-
putation.

FR Linear SVM RBF SVM
>0 0.751 (0.40) 0.759 (0.61)
≥25 0.790 (0.55) 0.805 (0.48)
≥50 0.867 (0.40) 0.869 (0.23)

Table 2: Cross-validation set ROC AUCs for linear and RBF SVMs.

ROC AUC comparisons by DeLong’s method are displayed in Table 3.

FR LR-LSVM NNET-LSVM LR-RSVM NNET-RSVM LR-NNET
>0 3.05e-01 3.61e-01 3.80e-01 3.24e-01 2.48e-01
≥25 2.71e-03 3.28e-01 8.51e-04 2.51e-01 2.58e-03
≥50 1.62e-01 3.62e-03 1.27e-01 9.71e-04 9.15e-02

Table 3: p−values for ROC AUC comparisons by DeLong’s method. LR =
logistic regression, NNET = neural computation, LSVM = linear SVM and
RSVM = radial basis function SVM.

6 Conclusion

Prognosticating ICSI outcomes presents a difficult and interesting modeling
problem, highly sensitive both to under- and overfitting. In our investigations

of linear and non-linear (neural computational) logistic regression methods, an
ICSI outcomes data set was modeled with ROC AUC varying between 0.751 and
0.869 depending on the threshold chosen for fertilization outcome. In general,
neural computational ROC AUCs were similar to or less than those of logistic
regression, indicating that although the decision space surface may be complex,
it may be possible to describe it with a single hyperplane.

Investigating support vector machines, a linear statistical method with highly
adaptive decision space modeling, we achieved lower ROC AUCs than with lo-
gistic regression when the threshold chosen was if any ova fertilized with ICSI,
indicating overfitting. If we specified the threshold to be if ≥ 25% of ova fer-
tilized, SVM performance was similar to that of logistic regression. However,
given a threshold of if ≥ 50% of ova fertilized, SVMs produced higher ROC
AUCs than either logistic regression or the investigated neural computational
algorithms, with an ROC AUC of 0.867 for a linear kernel, and 0.869 for an
RBF kernel.

ICSI outcomes modeling may thus present an application uniquely suited to
highly adaptive linear modeling methods such as support vector machines.

References

[1] C. Cortes and V. Vapnik. Support-vector network. Machine Learning,
20:273–97, 1995.

[2] E.R. DeLong, D.M. DeLong, and Clarke-Pearson D.L. Comparing the ar-
eas under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics, 44:837–45, 1988.

[3] R.M. Golden. Mathematical Methods for Neural Network Analysis and De-
sign. The MIT Press, Cambridge, Massachusetts, 1996.

[4] D.W. Hosmer and S. Lemeshow. Applied Logistic Regression. John Wiley
and Sons, Inc., New York, New York, second edition, 2000.

[5] G. Palermo, H. Joris, P. Devroey, and A.C. Van Steirteghem. Pregnancies af-
ter intracytoplasmic injection of single spermatozoon into an oocyte. Lancet,
340:17–8, 1992.

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numeri-
cal Recipes in C, The Art of Scientific Computing, chapter 15. Cambridge
University Press, Cambridge, England, second edition, 1992.

[7] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons, Inc.,
New York, New York, 1998.

[8] T.D. Wickens. Elementary Signal Detection Theory. Oxford University Press,
New York, New York, 2002.

