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Abstract 
Any feedforward artificial neural network (ANN) training procedure begins 
with the initialisation of the connection weights� values. These initial values are 
generally selected in a random or quasi-random way in order to increase 
training speed. Nevertheless, it is common practice to initialize the same ANN 
architecture in a repetitive way in order for satisfactory training results to be 
achieved. This is due to the fact that the error function may have many local 
extrema and the training algorithm can get trapped in any one of them 
depending on its starting point based on the particular initialisation of weights. 
This paper proposes a systematic way for weight initialisation that is based on 
performing multiple linear regression on the training data. Experimental data 
from a metal cutting process were used for ANN model building to demonstrate 
an improvement on both training speed and achieved training error regardless 
of the selected architecture. 
Keywords: Feedforward ANNs, initialisation, engineering data, multiple linear 
regression 

 
 
1. Introduction 
 
The connection weights between neurons are where the ANN stores information to 
describe the problem at hand and to quantify interdependencies between its inputs and 
outputs. The goal of the training procedure is to calculate the values of the weights 
that correspond to the minimum value of the error function. In the case of feedforward 
ANNs, this function is usually a sum of squares of the differences between the actual 
data and those that are calculated by the ANN, the weights being the unknown 
parameters. The initial values of weights determine the starting point of the training 
algorithm and directly affect training speed and training error. If these initial values 
are not close to the global minimum or are close to an area with many local minima of 
the error function, the training algorithm may be trapped in one of them and therefore 
training will be slow and/or produce bad results [1]. To avoid such problems, the 
initialisation is done in a random or quasi-random way. This, in turn, results in the 
need to train the same ANN multiple times, effectively using different initialisations, 
to ensure that the performance of the ANN model is primarily dependent on its 
architecture and not on the initial values of the weights. Consequently, the practitioner 
is involved in a repetitive process that requires more development time as well as 
experience and intuition. 

Different initialisation methods have been proposed to deal with this problem. 
Nguyen and Widrow [2], propose an initialisation in the interval [-0.5,0.5] using a 



uniform distribution. In this way, the active regions of the layer�s neurons will be 
distributed approximately evenly over the input space. The advantages of this method 
compared to purely random initialisations are that few neurons are wasted and 
training works faster since each area of the input space has associated neurons. Yam 
and Chow [3] minimize the norm 
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lSlWlA −⋅ , where l = 1, 2, �, L-1 (L being the 

number of layers of the ANN), Al are the inputs to the l-th layer, Wl are the weight 
values and Sl are the inverse of the activation function. When applied to function 
approximation the results correspond to a 46.1% in the number of required epochs. 
An extension of this method is described in [4], where the Cauchy inequality is 
introduced and two new methods using uniform and normal distribution initialisation 
respectively are proposed. Francois uses orthogonal arrays in [5] to linearly correlate 
the input and hidden neurons in order to improve the generalization ability of the 
ANN. A partial least-squares (PLS) algorithm is used in [6] together with the back-
propagation algorithm to calculate both the initial weight values and the optimal 
number of hidden neurons. The PLS structure is viewed as a simplified 3-layered 
ANN and its basic function is to reduce the number of input variables. A much 
different approach is adopted in [7] for function approximation. Since the function is 
known, its local extrema can be calculated and then these results can be used to 
initialize the weights. In this way, very fast training is achieved even in the case of 
multivariate functions. Pre-processing of data has received a lot of attention by 
researchers and two very thorough investigations concerning the different methods 
used and considerations that must be made are presented in [8] and [9]. Another very 
interesting work is described in [10] where k-nearest neighbour filtering is employed 
to remove noise from the training data. Ivanova and Kubat [11] employ decision-tree 
generators to initialize and train ANNs. After constructing decision-trees from the 
training examples, they transform the rules using the neurons as logical operators and 
set the initial weights so that the ANN approximates the decision-tree classifications. 

In all of the described methods, the initialisation of the weights is based on 
mathematical criteria and analytical equations. It is clear that most of these 
approaches are not generic, but rather strongly case-, or even, data-dependent and this 
is why they have been applied in focused problems such as function approximation. 
On the other hand, in the majority of engineering applications, the correlations 
between the different parameters are unknown and there is no analytical description 
due to the complex nature of the underlying phenomena. Therefore, an initialisation 
approach that combines a data-dependent model with a random initialisation scheme 
is being presented in this paper. 
 
 
2. The approach 
 
The initialisation method has been developed based on the following simplifications: 
it only applies to feedforward ANNs, with one hidden layer of neurons and a single 
neuron in the output layer. The activation function of the output layer is the identity 
function. These assumptions do not limit the generality of the proposed method 
because on one hand these are also valid for the majority of the ANN models that are 
usually developed for engineering applications and on the other hand, the method can 



be easily extended for more than one hidden layers. An ANN that fulfils these 
assumptions is given in Figure 1, with n input and m hidden neurons. The 
mathematical notation used is as follows: 

xi: activation of the i-ith input neuron (i = 1, 2, �, n), 
kj: activation of the j-ith hdden neuron (j = 1, 2, �, m), 
y: activation of the output neuron (i.e., the response of the ANN) 
IWj,i: weight between the i-ith input neuron and the j-th hidden neuron 
bj: bias of the j-th hidden layer 
LW1,j: weight between the j-ith hidden neuron and the output neuron 
by: bias of the output neuron 
tansig(x): hyperbolic tangent function 
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Figure 1. Feedforward ANN. 

 
The ANN�s response is given by: 
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During training, the only known magnitudes in equations (1) and (2) are y and 
xi, IWj,i, bkj, LW1,j and by are initialized and then their values are determined by the 
training algorithm used. These equations analytically correlate the input with the 
output parameters of the ANN, which in this case is nothing more than a complex 
non-linear model. 

If a multiple linear regression on the training data were conducted, the result 
would be: 
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where y is the dependent variable (output parameter) and xi are the independent 
variables (input parameters) and the coefficients αi and αo are all known. 

By comparing equations (2) and (3) it is easily concluded that: 
 ,  oajb = iaijIW =,

In this way, the results for the coefficients of the multiple linear regression 
model become the initial values of the first layer of weights and of the biases of the 



hidden layer of neurons. As for the second layer of weights, the initial values can still 
be obtained using a random or semi-random scheme allowing for a better search of 
the solution space in case of consecutive trainings of the same ANN architecture. 
Note that, if the data is split into training and testing subsets, the multiple linear 
regression should be performed using the training subset alone. 
 
 
3. Results and Discussion 
 
In order for the proposed method to be tested, a comparison was made to the Nguyen 
� Widrow (N-W) initialisation method, in terms of training speed and achieved 
training error, using experimental data. The Nguyen-Widrow method is generally 
superior to purely random initialisations, as discussed earlier, and this is why it has 
been selected for this comparison. Furthermore, this is the default initialisation 
method for the feedforward ANNs that are created through the ANN toolbox of the 
MATLAB software package, which was used to train the ANN models. The multiple 
linear regression (MLP) initialisation method was also implemented using MATLAB 
programming. 

The experimental data derived from a turning cutting process of a metal bar 
with the input parameters being the depth of cut (mm), feed (mm/rev), spindle speed 
(RPM), the ratio of the workpiece length to its diameter (L/D) and the ratio of the 
distance of the cutting point to the workpiece�s length (Li/L). The output parameter 
was the deviation of the actual from the desired depth of cut. A total of 40 different 
cuts were made. 

Three different architectures were used, using one hidden layer with 3, 6 and 
10 neurons respectively, in order to evaluate the method�s performance for different 
network sizes. For each architecture, there were 10 training procedures using the N-W 
method and 10 training procedures using the proposed method. For each training, the 
history of the mean squared error (MSE) in relation to the number of epochs was 
recorded. The detailed results are given in Tables 1, 2 and 3, for each architecture 
respectively. 

Using the smaller network, one can see that the two methods are almost 
equivalent in terms of training speed and performance. Although different limits for 
the maximum number of epochs were used, the training error was practically constant 
after the first 3000 epochs for all trainings. Regardless of the initialisation method, the 
achieved training error is not very good due to the low number of neurons in the 
hidden layer. 

By doubling the number of neurons in the hidden layer, the results are very 
different. Training stops in much fewer epochs and the training error is considered 
very good. By observing the N-W results, especially for training runs 3, 6 and 10, it 
may be concluded that the training algorithm was trapped in a local minimum. 
Instead, using the proposed method training is completed in almost any case 
comparatively faster and there does not seem to be any indication of convergence to 
local minima. 

Increasing the number of hidden neurons even more allows the N-W method to 
avoid local minima. However, the comparison of the two methods indicates that the 
proposed method is superior and produces more consistent initialisations. 



 
Training 

no. Epochs
MSE 

Training 
Error

Initialization 
method Epochs

MSE 
Training 

Error

Initialization 
method

1 5000 1,26E-06 N-W 6393 1,03E-06 MLP
2 5000 1,60E-06 N-W 6576 1,03E-06 MLP
3 1675 2,69E-06 N-W 6510 1,03E-06 MLP
4 5000 6,90E-07 N-W 10000 6,94E-07 MLP
5 5000 1,06E-06 N-W 10000 8,28E-07 MLP
6 5000 8,38E-07 N-W 6752 1,03E-06 MLP
7 612 8,10E-07 N-W 6990 1,03E-06 MLP
8 5000 7,69E-07 N-W 10000 8,28E-07 MLP
9 5000 9,13E-07 N-W 10000 8,28E-07 MLP

10 5000 1,60E-06 N-W 7030 1,03E-06 MLP  
Table 1. Training results using the two different initialisation methods for architecture 5x3x1. 

 
Training 

no. Epochs
MSE 

Training 
Error

Initialization 
method Epochs

MSE 
Training 

Error

Initialization 
method

1 2325 1,15E-29 N-W 2351 4,97E-27 MLP
2 3441 2,07E-28 N-W 1473 1,25E-30 MLP
3 10000 2,45E-07 N-W 2294 2,81E-29 MLP
4 9377 1,95E-26 N-W 1666 3,74E-30 MLP
5 1397 3,79E-24 N-W 957 3,73E-29 MLP
6 10000 3,91E-08 N-W 2147 1,09E-30 MLP
7 2565 1,37E-26 N-W 926 6,32E-28 MLP
8 2612 1,92E-28 N-W 996 7,54E-31 MLP
9 1701 6,85E-28 N-W 1926 2,50E-30 MLP
10 10000 3,23E-07 N-W 1019 8,82E-29 MLP  

Table 2. Training results using the two different initialisation methods for architecture 5x6x1. 

 
Training 

no. Epochs
MSE 

Training 
Error

Initialization 
method Epochs

MSE 
Training 

Error

Initialization 
method

1 1466 1,43E-25 N-W 915 5,61E-31 MLP
2 734 1,54E-28 N-W 686 1,72E-31 MLP
3 670 1,78E-29 N-W 750 1,67E-28 MLP
4 618 2,24E-25 N-W 1328 8,47E-26 MLP
5 1753 8,30E-26 N-W 1004 5,54E-31 MLP
6 765 7,63E-28 N-W 985 1,86E-26 MLP
7 983 5,90E-24 N-W 1032 2,12E-26 MLP
8 2155 1,11E-27 N-W 899 2,52E-28 MLP
9 256 1,27E-31 N-W 903 1,04E-28 MLP

10 1139 4,74E-24 N-W 1860 3,71E-31 MLP  
Table 3. Training results using the two different initialisation methods for architecture 5x10x1. 
 
 
4. Conclusions 
 
Feedforward ANNs have been widely used to model the complex interdependencies 
and phenomena that appear in engineering applications. In order to facilitate the ANN 
model development procedure a new method for the initialisation of the weight values 
has been proposed. This method involves an initial estimate for the weight values that 
is based on a first order approximation (multiple linear regression) of the training 
data. Based on the results, it is clear that there is an improvement for both the number 



of required epochs and the achieved training error. Thus, the proposed method results 
in faster and more accurate training of the ANN model. It must also be noted that the 
improvement is proportional to the size of the network, i.e. for larger networks the 
improvement is also larger, which is very desirable since these networks usually take 
more time to train. 
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