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Abstract. This paper shows that new and flexible criteria to resample
populations in boosting algorithms can lead to performance improvements.
Real Adaboost emphasis function can be divided into two different terms,
the first only pays attention to the quadratic error of each pattern and
the second takes only into account the “proximity” of each pattern to the
boundary. Here, we incorporate an additional degree of freedom to this
fixed emphasis function showing that a good tradeoff between these two
components improves the performance of Real Adaboost algorithm. Re-
sults over several benchmark problems show that an error rate reduction,
a faster convergence and overfitting robustness can be achieved.

1 Introduction

Multi-net systems are a good approach to solve difficult tasks which usually
require a very complex net, overcoming sizing and training difficulties. Con-
sequently, during the last years there has been an intensive research work to
design Neural Networks (NN) ensembles, following different approaches, such as
bagging or boosting [10].

Among the different methods that have been proposed, boosting procedures
[8], and in particular Real Adaboost (RA) algorithm, have become very popular
as a way to obtain advantage of “weak” learners. Concretely, RA works by
adding sequentially a new base learner trained with an emphasized population,
mainly paying its attention on the most erroneous samples (a detailed description
can be found in [9]).

Breiman’s work [2] points out that boosting schemes work because of focusing
on the problematic patterns, independently of the explicit form of the emphasis
function. Nevertheless, in [4] we showed that the RA emphasis function really
combines in a fixed way two emphasis terms: one pays attention to the quadratic
error of each pattern, and another takes into account its “proximity” to the
boundary. Furthermore, we also tested how the performance of classical RA
schemes can be improved focusing directly on the samples near the boundary.
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In this paper we incorporate an additional degree of freedom to this fixed
emphasis function, by means of a parameter that lets us combine the attention
paid to the erroneous and boundary samples; in this way, we will show that
usually the best way to resample the population is emphasizing neither most
erroneous samples nor boundary ones, but a particular tradeoff between them.

In the next section the classical RA algorithm will be described, so that it
can be easily linked with the emphasis function proposed in Section 3. In Section
4 we show the importance of a good emphasis selection comparing classical RA
with weighted emphasis functions in some benchmark problems. Finally, in
Section 5, conclusions and future research lines will be presented.

2 Real Adaboost

The fundamental idea of RA is to combine several “weak” learners in such a
way that the ensemble improves its performance. To build up an RA classifier,
at each round t = 1, ..., T a new base learner is added implementing a function
ot(xi) : X −→ [−1, 1] aimed to minimize the following error function

E2
t =

l∑
i=1

Dt(i)(ti − ot(xi))2 (1)

where l is the number of training patterns, ti ∈ {−1, 1} is the target for pattern
xi, ot(xi) is the “weak” learner output for xi, and Dt(i) is the weight that the
t-th learner emphasis function assigns to xi. Initially, all weights have the same
value D1(i) = 1/l, ∀i = 1, ..., l, and they are then updated according to

Dt+1(i) =
Dt(i) exp(−αtot(xi)ti)

Zt
(2)

where Zt is a normalization factor assuring that
∑l

i=1 Dt(i) = 1, and αt is the
weight assigned to the t-th weak learner. Overall output of the net fT (xi) is
calculated as the weighed combination of all learners:

fT (xi) =
T∑

t=1

αtot(xi) (3)

Values αt are calculated in each round according to

αt =
1
2

ln
(

1 + rt

1 − rt

)
(4)

where rt =
∑l

i=1 Dt(i)ot(xi)ti. This choice of αt values assures that the follow-
ing training error bound is minimized

Etrain =
l∑

i=1

| sign(f(xi)) �= ti | ≤
l∑

i=1

exp(−ft(xi)ti) (5)



Additionaly, in [6] is showed that the same criterion maximizes the classification
margin defined as ρ = mini=1...l ft(xi)ti.

Analyzing in detail emphasis function (2), it can be showed that it does not
only pay attention to the error of each pattern but also to its “proximity” to the
boundary, as we explained in [4] by rewritting (2) in the following manner

Dt+1(xi) =
1
Z ′

t

exp
(
−1

2

)
exp

(
(ft(xi) − ti)2

2

)
exp

(
−f2

t (xi)
2

)
(6)

Thus, it can be divided into two different factors:

Error emphasis exp
(

(ft(xi) − ti)2

2

)
(7)

Boundary emphasis exp
(
−f2

t (xi)
2

)
(8)

3 A weighted emphasis function

In the light of (6), one may wonder if this fixed combination of emphasis terms
is optimal in all situations. So, in this paper we study the effect of using an
emphasis function that combines the error term (7) and the boundary one (8)
by means of a weighting parameter λ (0 ≤ λ ≤ 1),

Dλ,t+1(i) =
1
Zt

exp
(
λ · (ft(xi) − ti)2 − (1 − λ) · f2

t (xi)
)

(9)

This flexible formulation allows us to pay more or less attention to the boundary
“proximitity” or to the quadratic error of each sample by selecting different
values λ. We can remark three special values of the weighting parameter:

• λ = 0: only the “proximity” to the boundary is taken into account.

• λ = 0.5: we get the classical RA emphasis function.

• λ = 1: the emphasis function only pays attention to the quadratic error.

In [4] we studied the first two particular cases1, showing that focusing directly
on the samples near the boundary (λ = 0) we can speed up the convergence, and
even avoid the well-known overfitting problem of RA. In other cases, focusing
on the most erroneous patterns works better. However, we will show next that
the best way to emphasize the population is frequently neither of previous ones,
but intermediate values of weighting parameter, depending on the particular
problem we are solving.

1We have tested a normalized version of (9) when λ = 0 and λ = 0.5.



4 Experiments

To show how an adequate emphasis selection can improve the performance of
boosting methods we have built a series of ensembles according to (9) for different
values of the weighting parameter (λ) and we have evaluated their performance
over several binary problems. In particular, we have selected six binary prob-
lems from [1]: Abalone (a multiclass problem converted to binary according to
[7]), Contraceptive, Image, Spam, Tictactoe and Waveform, and also a synthetic
problem from [5]: Kwok. In Table 1 we have summarized their main features
(number of dimensions (dim), number of samples of each class (C1/C−1) in the
training and test set). Some of the problems had a predefined test set; when
this was not the case, ten random partitions with 40% of the data set have been
selected to test the performance of the classifier.

Problem dim # Train samples # Test samples

Abalone 8 1238/1269 843/827

Contraceptive 9 506/377 338/252

Image 18 821/1027 169/293

Kwok 2 300/200 6120/4080

Spam 57 1673/1088 1115/725

Tictactoe 9 199/376 133/250

Waveform 21 2694/1306 659/341

Table 1: Main features of the benchmark problems.

To build the ensembles we have used as base learners Multi Layer Perceptrons
(MLPs) with different representational power, different number of hidden units
(M). Each of these MLPs has been trained to minimize cost function (1) by means
of a back-propagation algorithm with learning steps µ = 0.1 and µ = 0.01 for
the hidden and output layer, respectively.

We have built different ensembles for λ in the range [0, 1], using a 0.1 step. In
all the cases, the selection of the ensemble output weights, αt, is done according
to (4). In this way, we are still minimizing a bound on the training error, and
simultaneously maximizing the classifier margin, as RA does.

In Table 2 we have displayed the test errors for RA and the best result
that was achieved when varying the weighting parameter (λ0), averaged over 50
independent runs. We have used a different number of rounds (T) to assure a
complete convergence of the ensemble. Furthermore, to measure the statistical
importance of these approaches, λRA and λ0, we have used the Wilcoxon Rank
Test (WRT) [3], where a value p lower than 0.1 indicates that the differences
between them are significant2; on the contrary, p is close to 1 when there is no

2Values of p lower than 0.001 have been rounded down to 0.



statistical difference between the two rates.

Problem M T ERA λ0 Eλ0 WRT (p)

9 100 19.42 0.1 19.16 0
Abalone

2 250 19.56 0.3 19.27 0

6 20 28.91 0.1 28.58 0.16
Contraceptive

3 50 29.16 0 28.39 0.0028

3 100 2.74 0.5 2.74 1
Image

2 150 2.86 0.5 2.86 1

4 100 11.82 0.4 11.70 0
Kwok

2 200 12.27 0.3 12.24 0.34

3 100 5.83 0.5 5.83 1
Spam

2 150 5.92 0.5 5.92 1

4 150 2.92 0.4 2.02 0.0012
Tictactoe

2 900 7.78 0.3 6.60 0

13 100 8.85 0 8.16 0
Waveform

6 100 8.27 0 7.75 0

Table 2: Test errors for Real Adaboost (RA) and the best value of the weighting
parameter λ0.

It can be seen that λ = 0.5, corresponding to RA, is only the best setting
for Image; Spam results are independent of λ value for a wide range, to be
more specific the error rate remains unchanged for λ from 0.2 to 0.6; and better
results have been obtained for a different value in five out of the seven benchmark
problems. In addition to this, we have observed some other important effects
that are summarized next:

• In Abalone, Contraceptive and Waveform, emphasis functions which focus
mainly on boundary samples (λ ≤ 0.3) not only reduce the test error but
also provide a faster convergence: for instance, in Contraceptive the same
final error rate of RA was obtained with only three rounds.

• For some problems, certain selections of λ resulted in a much faster initial
convergence although the final error is higher than the results displayed
in Table 2. This effect is clearly shown in Tictactoe when emphasis is
centered on erroneous samples (λ ≥ 0.8).

• RA performance is frequently degraded due to overfitting during training.
When a more appropiate value of λ was used, this problem was reduced
drastically.



5 Conclusions and future work

In this paper we have studied the performance of boosting methods when using
different tradeoffs between error and boundary emphasis. In particular, we have
showed that a good selection of the weighting parameter can reduce the error
rate, accelerate the convergence of the ensemble, and even avoid the overfitting
problem.

These evidences suggest the appropriateness of designing automatic methods
to select an optimum value of the weighting parameter for each classification
problem. Although cross-validation is a straightforward choice, it would be more
interesting designing a method that let us adapt easier λ during the ensemble
growing. This constitutes a promising research line where we are currently work-
ing.
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