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Abstract. Uncertainty is inherent to medical decision making, and automated 
decision support systems should aim to reduce it. In this paper, MR spectral data 
are considered in a problem of discrimination of brain tumour types and grades. 

Models to fit these data can be affected by two sources of uncertainty that might 
occur in the data: the presence of outliers and data incompleteness. A model for 
multivariate data clustering and visualization, the GTM, is here redefined as a 
mixture of Student t-distributions that is robust towards outliers while providing 
missing values imputation. The effectiveness of this model on the MRS data is 
demonstrated empirically.  

1 Introduction 

The reduction of uncertainty must be the primary goal of any automated system 

designed to provide support for medical diagnostic and prognostic decision making. 

In this brief paper, we deal with the decision problem of brain tumour discrimination 

through Magnetic Resonance Spectroscopy (MRS) information, obtained from living 

tissue. In practice, it is not unusual that expert assessments of the type and grade of 

the tumour be made on the basis of visual inspection of MR spectra and prior 

experience. Robust decision support systems are of paramount importance in these 
circumstances. 

 Two potential sources of uncertainty in diagnosis or prognosis based on MR 

spectrometric data are the presence of outliers and the incompleteness of the available 

data in the form of missing values. The decision support model discussed in this paper 

is a variation on the standard Generative Topographic Mapping (GTM:[1]). The GTM 

allows for the simultaneous clustering and visualization of multivariate data. It was 

originally described as an alternative to the neural network-inspired Self-Organizing 

Maps (SOM:[2]) with sound probabilistic foundations. The GTM can also be seen as 

a constrained mixture of distributions. This definition as a constrained model makes it 

less flexible than general mixtures, but the renounce to full flexibility is compensated 

by its data visualization capabilities.  
 The GTM was originally defined as a constrained mixture of Gaussians. It is 

well reported [3] that Gaussian mixture models lack robustness in the presence of 

outlier observations in the data sample. Several recent studies [4,5,6] have suggested 

the use of multivariate Student t-distributions as a robust alternative to Gaussians for 

mixture models. Here, we redefine the GTM as a constrained mixture of Student t-

distributions, the t-GTM, and show its ability to successfully identify data outliers 



and, simultaneously, minimize their negative impact on the calculation of the model 

parameters. The management of the uncertainty introduced by data incompleteness is 

our second goal. In the following sections, details are provided on how to integrate 

missing data imputation as part of the t-GTM model fitting to the data. The resulting 

model plays a double role: it deals robustly with outliers while simultaneously 

imputes missing values, allowing the exploration of multivariate data through 

visualization at a reasonable computational cost. 

2 Generative Topographic Mapping as a mixture of t-

distributions 

The GTM is a non-linear latent variable model that defines a mapping from a low 

dimensional latent space onto the multivariate data space. The mapping is carried 

through by a set of basis functions generating a (mixture) density distribution, and it is 

defined as a generalized linear regression model: 
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probability distribution for the data can then be defined, leading to an expression for 

the complete log-likelihood ( )XW β,L
c

. The Expectation-Maximization (E-M) 

algorithm can be used to obtain the Maximum Likelihood (ML) estimates of the 

adaptive parameters W and β . Details of this procedure can be found in [1]. 

 For the Gaussian GTM, the presence of outliers is likely to negatively bias the 

estimation of parameters W and β , and it is also likely to result in extreme estimates 

of the posterior probabilities of component membership [3]. To overcome this 

limitation, the GTM is here redefined as a constrained mixture of Student t-

distributions: the t-GTM. Assuming now that the basis functions Φ  are Student t-

distributions, the data probability can be defined as 
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where ( )⋅Γ  is the gamma function and the parameter ν  can be understood as a tuner 

that adapts the level of robustness (divergence from normality) for the mixture. This 

leads to a new complete log-likelihood: 
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From this expression, ML estimates of the adaptive parameters W and β  can be 

calculated, using the E-M algorithm. Further details can be obtained from [7]. A 

similar closed expression for parameter ν  cannot readily be obtained, although an 

adequate value can be calculated through preliminary runs of the algorithm.  

Missing data imputation through t-GTM 

Missing data imputation arises naturally as part of the ML estimation of the t-GTM 

parameters via de E-M algorithm [8]. Following [9], two separate submatrices: 
o

X , 

consisting of the observed data, and 
m

X , consisting of the missing data, are 

considered. The E-step of the E-M algorithm includes the calculation of the expected 

complete log-likelihood. The definition of submatrices 
o

X  and 
m

X  entails a 
modification of (3) that becomes: 
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where 
k

C  is a summary coefficient and Z  is an indicator matrix, with elements 
kn

z  

describing our lack of knowledge of which latent point 
k

u  is responsible for the 

generation of data point 
n

x . The sufficient statistics that must be calculated prior to 

the M-step of the E-M algorithm are: the expected values of the unknown 
kn

z , 
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and old stands for previous iterations. The missing data imputation is now 

straightforward, performed according to: 
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This imputation procedure completes the data and would allow their full visualization 

and clustering on the low-dimensional latent space (although in this paper the focus is 

placed on the assessment of the model’s ability to handle outliers and missing data 

imputation). Update expressions for parameters W and β  can be calculated in closed 

form in the M-step of the E-M algorithm, using those now reconstructed data. Details 

are omitted for the sake of brevity. 

3 MRS and brain tumour data 

MRS is a non-invasive tool capable of providing a detailed fingerprint of the 

biochemistry of living tissue. Diagnosis and prognosis based on Magnetic Resonance 

Imaging (MRI) can sometimes be uncertain. The additional information contained in 

the MR spectrum can help the clinical expert by disambiguating decisions. The data 

used in this study consist of 98 single voxel PROBE (PROton Brain Exam system) 

spectra acquired in vivo for five viable tumour types (Astrocytes, Glioblastomas, 
Metastases, Meningiomas, and Oligodendrogliomas) and cystic regions from tumours 

that, given their specific composition, are likely to differ from the tumours 

themselves. A description of the automated protocol used for data acquisition can be 

found in [10]. The spectra were digitised, sampling the region known to contain 

clinically relevant metabolic information, into 194 frequency intensity values. The 

high dimensionality of the problem makes either feature extraction or variable 

selection necessary. In [10], a process based on Multivariate Bayesian Variable 

Selection was shown to provide a good description of the data set in the form of 6 

frequency intensities, corresponding to Fatty Acids, Lactate, a compound-unassigned 

peak, Glutamine, Choline, and Taurine-Inositol. These 6 variables will be the inputs 

to the t-GTM model. 

4 Experimental results 

According to [3], a given data instance could be considered as outlier if the value of: 
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was sufficiently small or, equivalently, sufficiently large the value of  

 ∑ −=
k

nkkn

*

n
ẑO
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Figure 1: (Left): Histogram of the statistic (9); outliers are characterised by large 

values that, in this case, mostly correspond to cystic region spectra. (Centre): 

Posterior probability of all t-GTM mixture components in the square latent grid, 

given outlier spectrum cystic region 5. (Right): Posterior probability of all 

Gaussian GTM components, given the same outlier. 

The histogram in Figure 1 (Left) reflects the values of the statistic (9) for the brain 

tumour data, providing the decision maker with a measure of novelty that might be 

used to focus attention on MR spectra that do not fit the main distributions estimated 

by the model. The 7 data instances with largest values for statistic (9) are cystic 

regions. In more detail, 14 out the 17 cystic regions in the data set are included in the 

three highest decile intervals of (9). This is consistent with the specificity of these 
regions, as mentioned in the previous section. Figure 1 (Centre, Right) displays the 

posterior probability of all latent points (mixture components) in the GTM square 

grid, given a data point, for an example spectrum which was labelled as a extreme 

outlier according to (9). Clearly, no mixture component of the t-GTM takes main 

responsibility for this spectrum, illustrating how the t-GTM effectively minimizes the 

negative impact of outliers on the modelling of the distributions. In contrast, one 

single component of the Gaussian GTM takes most responsibility for the outlier. 
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Figure 2: Histograms of the statistic (9) at different levels of data incompleteness 

(5, 10, and 20%, in turn, from left to right). In order to allow comparison with 

Fig.1 (Left), the most extreme cystic region outliers have been labelled. 

The attention is now turned towards the effect of data incompleteness on outlier 

identification by the model. The proposed method of missing data imputation using 

the t-GTM is applied to three levels of incompleteness. The corresponding histograms 

of the statistic (9), in Figure 2, show that, even at rather high levels of incompleteness, 

the imputation procedure still completes the data in such a way that almost the same 

cystic regions are singled out as the most extreme outliers. 



5 Conclusion 

Artificial Intelligence models in general and Artificial Neural Networks in particular 

have a longstanding track record as tools for automated decision support in medical 
applications concerning diagnosis and prognosis [11]. MRI is one field in which 

prognostic decision making entails expert subjectivity [12]. The analysis of MRS data 

has a considerable potential as a tool to support decision making, but data can be also 

a source of uncertainty in the form of outlier presence or data incompleteness. 

 In this paper we have introduced a redefinition of GTM as a constrained mixture 

of t-distributions. It has been shown to behave robustly in the presence of outliers, 

while minimizing, through imputation, the negative effect of data incompleteness.  

Acknowledgements 

The authors gratefully acknowledge C. Arús from the Universitat Autónoma de 
Barcelona for making available the data for this study. 

References  

[1] C.M. Bishop, M. Svensén and C.K.I. Williams, GTM: The Generative Topographic Mapping, 

Neural Computation, 10:215-234, 1998. 

[2] T. Kohonen. Self-organizing Maps (3rd ed.), Springer-Verlag, Berlin, 2000. 

[3] D. Peel and G.J. McLachlan, Robust mixture modelling using the t distribution, Statistics and 

Computing, 10:339–348, 2000. 

[4] C. Archambeau, F. Vrins and M. Verleysen, Flexible and robust Bayesian classification by finite 

mixture models. In M. Verleysen, editor, proceedings of the 12th European Symposium on Artificial 

Neural Networks (ESANN 2004), D-Side Pub., pages 75-80, Bruges (Belgium), 2004. 

[5] C.M. Bishop and M. Svensén: Robust Bayesian mixture modelling. In M. Verleysen, editor, 

proceedings of the 12th European Symposium on Artificial Neural Networks (ESANN 2004), D-Side 

Pub., pages 69-74, Bruges (Belgium), 2004. 

[6] H.X. Wang, Q.B. Zhang, B. Luo and S. Wei, Robust mixture modelling using multivariate t-

distribution with missing information, Pattern Recognition Letters, 25:701–710, 2004. 

[7] A. Vellido. Generative Topographic Mapping as a constrained mixture of Student t-distributions: 

Theoretical developments, Technical Report LSI-44-7-R, Universitat Politècnica de Catalunya 

(UPC), Barcelona, Spain, 2004. 

[8] Z. Ghahramani and M.I. Jordan. Learning from incomplete data. Technical Report, AI Laboratory, 

MIT, MA, US, 1994. 

[9] Y. Sun, P. Tiňo and I. Nabney. GTM-based data visualization with incomplete data. Technical 

Report, NCRG, Aston University, Birmingham, England, 2001. 

[10] Y. Huang, P.J.G. Lisboa and W. El-Deredy, Tumour grading from Magnetic Resonance 

Spectroscopy: A comparison of feature extraction with variable selection, Statistics in Medicine, 

22:147-164, 2003. 

[11] P.J.G. Lisboa, A review of evidence of health benefit from artificial neural networks in medical 

intervention, Neural Networks, 15:11-39, 2002. 

[12] P.J.G. Lisboa, A. Vellido and H. Wong, Outstanding issues for clinical decision support with Neural 

Networks. In H. Malmgren, M. Borga and L. Niklasson , editors, Artificial Neural Networks in 

Medicine and Biology, pages 63-71, Springer, London, 2000. 


