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Abstract. In this paper we describe an investigation into the prediction
of emergency bed demand - bed demand due to non-scheduled admissions
- within a NHS1 hospital in South London, U.K. A hybrid methodology,
incorporating a neural network and an ARIMA model was used to predict
a time series of bed demand. A thorough statistical analysis of the data
set was performed as a preliminary phase of the research from which a
classical linear predicting model was developed. The prediction errors or
residuals from this model were then used as input to a neural network.
These methods represent a novel approach to the problem of e±cient bed
resource management for hospitals.

1 Introduction

NHS hospital bed mangers face a di±cult task in attempting to allocate their
beds between emergency admissions and so-called elective admissions { those
admissions that are planned and, in general, referred by the patient's doctors or
consultants. Depleting the bed stock in an attempt to clear waiting lists runs
the risk of being unable to admit emergency cases. On the other hand a policy
of reserving too many beds for emergency admissions has an obvious impact on
waiting lists. Forecasts of demand are desperately needed for bed management
in the NHS. The report [1] identi¯es that around a quarter of Trusts2 make no
assessment of likely bed demand for more than a day ahead. Moreover, whilst
the National Audit O±ce acknowledges that it is di±cult to predict emergency
admissions with precision, it strongly urges NHS Trusts to \make more e®ective
use of their knowledge of patterns of emergency admission to assess the likely
demand on their resources", [1]. In this paper we describe an investigation into
the prediction of emergency bed demand carried out at an acute hospital in
South London, U.K.
Time series data consisting of approximately 5 years of daily maximums,

aggregated on a weekly basis, of emergency bed occupancy was released to us
by the research sponsor { Bromley NHS Trust. A central goal of the research is

1In the UK the state provider of health is the National Health Service { abbreviated to
NHS throughout this paper.

2Within the NHS a Trust is a collection of hospitals with ¯nancial autonomy, charged with
implementing governmental health policy and accountable directly to government.



to develop a reliable means of predicting peak or maximum emergency demand
on a weekly basis so that more informed and reliable strategic decisions can be
made by bed managers without committing unacceptably high risks of depleting
the bed stock for emergency cases.
We report here only on the one-step problem for our data. This means that

we consider the problem of developing a model for the prediction of the weekly
maximum for one week hence. Discussions with bed managers reveal that this
is likely to be an extremely useful indicator and theoretically will allow planners
to allocate bed resources in a more e±cient manner by anticipating the likely
demand on bed stock during the following week.
The research reported here builds upon that presented in [2], which can be

considered as the starting point of this investigation.

2 Methodology

There are perhaps many competing approaches to this type of problem. In terms
of the way in which data was gathered over time it seemed perfectly natural to
treat the problem as one of times series prediction. Central to such a study is
Takens embedding theorem [3] which loosely says that there is an integer d such
that the dynamics of the time series can be reconstructed by embedding the
series as a sequence of vectors (x1; : : : ; xd) 2 Rd. Our chosen methodology for
estimating d is presented in the next section.
In summary we investigated many models (in particular regime switching

models of the SETAR variety and an FIR neural network with temporal back-
propagation) but we settled upon a hybrid one, prompted by [4], wherein a
forecasting model consists of a stochastic linear model, Lt = L(xt), and a neural
network, N , such that if et is the residual of the ¯tted linear model L,

et = xt ¡ Lt
then the hybrid forecast will be

xt = Lt +Nt(et):

We followed a classical Box-Jenkins approach to the ¯tting of the linear model
(see [5]), very brie°y summarised in the next section.
Perhaps the ¯nal justi¯cation of the chosen model is the accuracy of out-of-

sample predictions. In fact our model contains considerable predictive power.

3 Model Development

3.1 Linear Model Development

The material in this section will be very brief, we refer the reader to [5] for an
exposition of the theory and practice of ¯tting linear models of the ARIMA type.



The most fundamental linear, stochastic model of a time series which encap-
sulates dependencies on historical values (the autoregressive element) as well as
dependencies on independent random disturbances is the ARMA model

xt =

pX
i=1

Ãixt¡i + "t +
qX
i=1

µi"t¡i: (1)

The p + q + 2 parameters (¹; µ1; : : : ; µp; Ã1; : : : ; Ãq; ¾
2), need to be estimated

from the data set, (¹ is the mean and ¾2 the variance of the independent and
identically distributed (i.i.d) random variables "t). However, ARMA models
assume an underlying stationary time series. In practice some kind of ¯lter is
applied to xt to render the series stationary. Quite often di®erencing does the
trick; we de¯ne a new time series yt = xt ¡ xt¡1, and iterate this di®erencing
operation until the series yt cannot be distinguished from a stationary series by
signi¯cance testing. An ARMA model of order p, q that has been di®erenced d
times to render it stationary is known in the trade as an ARIMA(p; d; q) model.
Further details of model ¯tting are omitted due to lack of space.
The linear model ¯tted onto the provided data set is an ARIMA(1,1,2)

(strictly speaking it is a SARIMAmodel, essentially two ARIMAmodels, captur-
ing the weekly and seasonal statistics of the time series. The seasonal component
being (0,1,0), in other words we have di®erenced once to render the ¯ltered series
annually stationary).

3.2 Lagged Mutual Information

An alternative to studying the ACF of a time series is the estimation of the
lagged mutual information. The de¯nition of this measure is

S(¿) = ¡
X
ij

pij(¿)log
³pij(¿)
pipj

´
(2)

where, for some partition on the real numbers, pi is the probability of ¯nding
a time series value in the i-interval, and pij(¿) is the joint probability that an
observation that falls into the i-th interval falls into the j-th interval ¿ time
units later. In theory this expression has no systematic dependence on the size
of the partition elements and can be quite easily computed. There exist good
arguments (see [6]) that if S exhibits a marked minimum for a value of ¿ , then
this is a good candidate for a embedding dimension guaranteed by Taken's the-
orem to reconstruct the dynamics. In practice we use this measure to determine
the size of the input layer to the neural network trained on the residuals. For
more details and available software for calculating S, see [7].

4 The Neural Network Model

We report here on a candidate neural network with an 8¡3¡1 architecture (that
is, 8 input units, 3 hidden units and one linear output unit); for a discussion of



alternative architectures see section 5. The number of inputs was obtained as
the ¯rst minimum of the lagged mutual information function.
Of importance here of course is the algorithm used to train the network.

We used the GRG2 algorithm { a modi¯ed version of the generalised reduced
gradient method (see [8]). The superiority of GRG2 over stochastic gradient
descent in quickly ¯nding better solutions over a broad range of optimisation
problems has been reported by several researchers, see for example, [9].
We adopted the Statistical Stepwise Method (SSM) for weight elimination,

[10]. We prefer this method to competing approaches because of it's statisti-
cal rigour. If we unpack the estimated network weights into a vector, Ŵ =
(ŵ1; : : : ; ŵm), then the SSM algorithm consists of 4 steps:

1. Compute the measures Q(l) = ŵl
¾̂(ŵl)

, where ¾̂(ŵl) is the estimated stan-

dard deviation of wl (computed using the inverse Hessian matrix, see [10],
p.1357);

2. De¯ne l¤ = argminwl2W fQ(l)g, { the argument of the minimum value of
the quotients in Step 1;

3. De¯ne Wl as the set of weights W with wl = 0, then test the model
Wl¤ (null hypothesis) against the model Ŵ (the alternative hypothesis):
accept the elimination of wl¤ if Q(l¤) < ®, for some critical value ®. This
signi¯cance test is a Student t-test and we set ® = 1:96. Actually, as
recommended in [10], we use ® = 1:5, in accordance with most stepwise
regression tests in statistics.

4. In case we reject the null hypothesis, stop the process and keep the previous
set of weights. Otherwise retrain the network corresponding to the model
Wl¤ and go to Step 1.

The SSMmethod is theoretically superior to the OBD method de¯ned in [11],
which centres around the notion of the saliency, sl, of a weight wl. The saliency
of a weight is the increase in residual error that results from its elimination:
sl = (1=2T )(S(Ŵl) ¡ S(Ŵ )), here S(W ) is the sum of squared residuals using
the set of weights W . Now it can be shown that

Q(l)2 =
2Tsl
S(W )
T¡m

and the asymptotic distribution of Q(l)2 (as T ! 1) is a Â2-distribution with
one degree of freedom. Thus although signi¯cance testing the Q(l) statistics
is equivalent to the comparison of the saliency statistics, the drawback with
the OBD scheme is that it does not take into account the relative value of the
saliency. Moreover the use of only diagonal elements of the Hessian matrix in
OBD is equivalent to assuming that weights are independentely distributed. The
SSM algorithm, makes no such assumptions and uses the statistic Q(l) directly,
thereby capturing the notion of relative size of each saliency. For more details,
see [10].



A training set of 500 observations of weekly maximum occupancy was di-
vided into in-sample training sets and out-of-sample training sets. The mean
occupancy for the observed period was 411:8 beds (median 411), with a stan-
dard deviation of 27:8. The values °uctuated exhibiting a minimum of 335 and
a maximum of 526. The inter-weekly °uctuation, measured by the standard
deviation weekly di®erences (i.e. the ¯rst di®erence of the time series) was 14:5,
approximately 3:5% of total occupancy; the data was normalised before presen-
tation to the hybrid model.
We measure the performance of both models by the out-of-sample RMSE,

de¯ned as

RMSE2 =
1

T

TX
t=1

(x̂t+1 ¡ xt+1)2;

where x̂t is the model prediction at time t and T is the size of the out-of-sample
training set.
We summarise our ¯ndings in the table below. Table 1 provides the in-sample

and out-of sample performance of the RMSE for the ARIMA and hybrid models.

num. of (8)-vectors ARIMA Hybrid imp.

in-sample 350 22.439 16.995 24.3%
out-of-sample 140 23.009 19.96 13%

Table 1: RMSE comparisons.

The last column measures the improvement in the hybrid predictions com-
pared to the ARIMA model. We see that in-sample predictions are superior and
out-of-sample improvements are much reduced but still provides 13% improve-
ment. There is little degradation in performance in prediction for the linear
model from in-sample to out-of-sample performance, however the hybrid model
has larger out-of-sample RMSE. As for weight elimination the SSM algorithm
eliminated, for example, 3 input-to-hidden weights from the fully connected
8 ¡ 3¡ 1 model and improved out-of-sample forecasting by approximately 4%.
The ¯ndings of this research suggest that weight elimination according to SSM is
largely insensitive to the size of the critical value ® constrained to lie in the inter-
val (1; 1:96) say, since the weight eliminations that took place were all con¯rmed
by values of Q(l) much smaller than 1:0.

5 Conclusions

We have presented a time series prediction problem concerning bed occupancy
in a hospital in the UK. In the context of an increasing awareness for cost-
e±ciency in the provision of hospital services in the UK this is an important
application; it is, to these authors' knowledge, also a novel application. We
have been able to demonstrate the improvement which results from employing
a hybrid model consisting of a linear ARIMA predictor and a neural network,
trained to capture the residual nonlinear correlations undetected by the linear



model. Improvements are substantial as evidenced by both in-sample and out-of-
sample RMSE. The model described in this paper is currently being bench-tested
in the hospital in order to assess the accuracy and usefulness of such a tool for
everyday use by bed managers. Alternative neural network architectures are also
under consideration but the model reported here is currently the best, measured
by out-of-sample RMSE.
One future direction for this research is to consider the possiblity of the

presence of regimes in the time series data. Wavelet analysis of daily occupancy
in the hospital reveals the existence of a 7 day cycle that exhibits intermittency.
Thus there is evidence that regime-switching occurs within this system. Indeed,
one regime appears to coincide with increased demands on bed supply during
the winter months. However, models constructed according to this paradigm
performed poorly in out-of-sample tests compared to the ARIMA model and
hence to the hybrid model. We plan to consider the possibility of building hybrid
models hR for the distinct regimes, R = 1; 2, and switching between them at the
intermittency times of the 7-day cycle. It is conjectured that such a scheme will
provide more ¯nely tuned and therefore better forecasts.
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