
Exponential Stability of Stochastic, Retarded
Neural Networks

Mark P. Joy
School of Mathematics, Kingston Univeristy,

Kingston-upon-Thames, Surrey KT1 2EE, UK.
m.joy@kingston.ac.uk

Abstract. The stability analysis of neural networks is important in
the applications and has been studied by many authors. However, only
recently has the stability of stochastic models of neural networks been
investigated. In this paper we analyse the global asymptotic stability
of a class of neural networks described by a stochastic delay di®erential
equation. It can be argued that such a model is as comprehensive as one
would like to be when studying perturbations of neural networks since
delay siganalling and noise are accounted for. We present a convergence
theorem and discuss some examples of its use.

1 Introduction

The mathematical foundation of the stability analysis of neural networks has
advanced considerably in the last ten years or so (see [1],[2], [3], [4], for example).
Recently however the theoretical foundations of this subject has broadened to
include stochastic di®erential equation models for neural networks. The papers
[5], [6] study the global asymptotic stability of stochastic, pure-delay neural
networks (of the Marcus-Westervelt type, see [7]) and have laid the foundations of
this subject. In this paper we study a stochastic functional di®erential equation
model of a neural network containing terms involving instantaneous and delayed
signals { thus our model includes stochastic, delayed Cellular Neural Networks.
Our model is

dx(t) = (¡Px(t) +A0f(x(t)) +A1f(x(t¡ ¿)))dt+ g(x(t); x(t¡ ¿))dB(t); (1)
where A0 and A1 are ¯xed (n £ n) real matrices, P is a diagonal matrix of
positive reals, f is the usual diagonal mapping consisting of sigmoidal functions,
B(t) is an n-dimensional Brownian motion and ¿ > 0 The model (1) gives rise
to an Itô process under standard conditions which we elucidate below.
Two dynamics dominate the theory of continous-time neural networks:

a) the so-called content addressable memory dynamic introduced in [2] and
utilised in Hop¯eld networks;

b) global asymptotic stability, we refer to such a dynamic as GAS.

In (a) it is usual for a ¯nite set of equilibria to attract all trajectories of
the dynamical system. Roughly speaking such point attractor networks recall



memory states, since solutions °ow from an intial condition to one of the stored
memories. In (b) a unique stable equilibrium p exists and for all initial conditions
x, !(x) = p. Here the location of p usually depends on some external input to
the network, thus the network may be viewed as a non-linear classi¯er of inputs.
It is this dynamic which we study here, our goal is to seek conditions on the
parameters on (1) which ensure that the stochastic neural network is almost
surely GAS.
Other authors have commented on the neccessity of incorporating noise into

neural network models (see [8], p. 309). In one context the importance of a
model such as (1) is clear: if neural networks are to be sucessfully fabricated as
non-linear circuits then delays are unavoidable due to the ¯nite switching speed
of ampli¯ers. Such an environment clearly also contains thermal noise. It is
important therefore to enquire whether a (usually deterministic) dynamic such
as GAS is robust to stochastic perturbations.
One last comment is relevant. One can argue that choosing ¿ to vary among

the neurons in the network, and even setting ¿ = 0 for some subset of neurons,
exhibits our model as a subtype of the neural network presented in [7]. However,
casting the neural network equation in the form of (1), allows for two distinct
processing modes: through the medium of the feedback term supported by the
matrix A0, instantaneous signals are propagated by all cells in the network. In
addition, through the medium of A1 all neurons propagate delayed signals. This
°exibility is important in the applications and is implicit in the Cellular Neural
Network paradigm; see [9], for example. From a theoretical perspective, the
model (1) approaches the widest possible form of functional di®erential equation
model involving integrated delays. Here we `approximate' an integral term with
delays at distinct points in time.

2 Background Material On Stochastic Di®erential Equa-
tions

In this section we present the notation used throughout this paper and outline
in brief some fundamental theory. We refer the reader to [10] for proofs of the
results in this section. We denote by C = C([¡¿; 0];Rn]), the Banach space of
continuous functions Á: [¡¿; 0]! Rn with the norm kÁk = sup¡¿·µ·0 j Á(µ) j.
If A is a vector or a matrix AT stands for the transpose of A, trace(A) is the
sum of the diagonal elements of A. If A is a real, symmetric matrix ¸max(A)
denotes the largest eigenvalue of A.
Let B(t) = (B1(t); : : : ; Bm(t)) be anm-dimensional Brownian motion de¯ned

on a complete measure space (−;F ;P); this process de¯nes the natural ¯ltration
fFtgt¸0 (Ft is the ¾-subalgebra generated by B(s) for 0 · s · t). Further de¯ne
² L2Ft([¡¿; 0];Rn]), the family of all Ft-measurable C([¡¿; 0];Rn])-valued
random variables Á such that kÁk2L2 = sup E j Á(µ) j2<1;

In the sequel SFDE will stand for stochastic functional di®erential equation.



Consider the SFDE (1). Let g:Rn £C !Mm£n(R), so that g maps onto a
(n £m) real matrix. Throughout this paper we will set m = n, such a scheme
can represent noise injected into individual neurons independentley of all other
neurons. We assume that the neuron activation function, f :R ! R, is a non-
decreasing C1-function which satis¯es xf(x) > 0, f(0) = 0 and

f 0(x) · 1: (2)

If we assume that g is locally Lipschitz continuous and satis¯es the linear
growth condition then standard theory shows that given initial data Á 2 C a
unique solution x(t;Á) exists de¯ned on t ¸ 0, see [10]. x(t;Á) 2 L2Ft([¡¿; 0];Rn]).

3 GAS of Stochastic Neural Networks

In this section we will prove the main result of this paper, a theorem guaranteeing
the almost sure GAS of a stochastic neural network. We will establish our result
using a Lyapunov functional V :C ! R. Since solutions to (1) are processes
with values in the Banach space C, we need to ¯nd the (weak) in¯nitesimal
generator, L, of the semi°ow on C. Such an object allows us to ¯nd the variation
of functionals such as V along solutions of (1). Using (5.1) of [11] we obtain

LV (xt) = rV (xt(0)) ¢ (¡Pxt(0) +A0f(xt(0)) +A1f(xt(¡¿))) +
1

2

X
i;j

Vxixj (xt(0))¾ij(xt); (3)

provided that V has a continuous second derivative with respect to xt(0); Vxixj
denotes a second partial derivative. We are now able to state and prove the
main result of this paper.
Theorem Consider the stochastic functional di®erential equation (1). As-

sume that there exist symmetric nonnegative de¯nite matrices C1, C2, C3 and
C4 with C2 diagonal, C2 = ¢(±1; : : : ; ±n) such that

trace [g(x; y)T ¢ g(x; y)] · xTC1x+ yTC2y + f(x)TC3f(x) + f(y)TC4f(y); (4)
where x = xt(0) , y = xt(¡¿) and f is the diagonal mapping f(x1; : : : ; xn) =
(f(x1); : : : ; f(xn))

T . Assume further that there exists a diagonal matrix D =
¢(d1; : : : ; dn) (di > 0) such that the symmetric matrix

Q =

0@¡2P + C1 + C2 +D A0 A1
AT0 C3 ¡D 0
AT1 0 C4 ¡D

1A
is negative de¯nite.
Then the trivial solution of (1) is almost surely exponentially stable. In other

words x(t;Á)! 0, t!1, a.s.
Proof. We ¯x our initial condition » 2 C arbitrarily and agree that x(t; ») =

x(t). Let us de¯ne V :C ! R by

V (Á) =j Á(0) j2



Clearly V ¸ 0. Since V has a continuous second derivative with respect to Á(0)
the operator LV satis¯es

LV (Á) = 2Á(0)T (¡PÁ(0) +A0f(Á(0)) +A1f(Á(¡¿)))
+
1

2
trace [g(x; y)T ¢ g(x; y)]

for all Á 2 C. Now let Á = xt, and set xt(0) = x and xt(¡¿) = y. We have

LV (xt) = ¡2xTPx+ 2xTA0f(x) + 2xTA1f(y) + 1
2
trace [g(x; y)T ¢ g(x; y)]

whence,

LV = ¡2xTPx+ 2xTA0f(x) + 2xTA1f(y) + xTC1x+ yTC2y
+f(x)TC3f(x) + f(y)

TC4f(y)

by hypothesis. We rearrange, to obtain

LV (xt) = xT (¡2P + C1 + C2 +D)x+ 2xTA0f(x) + 2xTA1f(y)
+f(x)T (¡D + C3)f(x) + f(y)T (¡D + C4)f(y)

+yTC2y + f(x)
TDf(x)¡ xT (C2 +D)x+ f(y)TDf(y):

It is now easy to conclude that

LV (xt) · (x; f(x); f(y))TQ

0@ x
f(x)
f(y)

1A+ yTC2y + f(x)TDf(x)
+f(y)TDf(y)¡ xT (C2 +D)x:

Let ¡¸ = ¸max(Q), so that ¸ > 0, then we have
LV (xt) · ¡¸(j x j2 + j f(x) j + j f(y) j2)¡ xT (C2 +D)x+ yTC2y

+ f(x)TDf(x) + f(y)TDf(y)

· ¡
X
(¸+ ±i + di)x

2
i +

X
(±iy

2
i ¡ ¸f(yi)2 + dif(yi)2)

¡
X
(¸¡ di)f(xi)2:

From the de¯nition of the matrix Q we have ¸ ¸ di, thus

LV · ¡
X
(¸+ ±i + di)x

2
i +

X
(±i ¡ ¸+ di)y2i :

We are now in a position to exploit theorem (2.1) of [5]; we are able to conclude
exponential stability of the trivial solution.
Remark In fact the theorem yields a bound on the sample Lyapunov expo-

nent of the solution since thorem 2.1 of [5] gives

lim sup
t!1

1

t
j x(t) j· ¡°

2
; a:s;



where ° is the unique root of the equation

¸1 = ° + ¸1¸2e
°¿ ; (5)

with

¸1 = min(¸+ ±i + di); ¸2 = max
(±i + di ¡ ¸)
(¸+ ±i + di)

:

4 Example

In this section we examine an example of the use of the above theorem.
Consider the SFDEµ
dx1(t)
dx2(t)

¶
=

µ¡2 0
0 ¡2

¶µ
x1
x2

¶
dt+

µ¡0:5 0
¡0:5 1

¶µ
f(x1(t))
f(x2(t))

¶
dt+µ

1
2 0
1 ¡1

3

¶µ
f(x1(t¡ ¿))
f(x2(t¡ ¿))

¶
dt+

µ
0:2x2(t¡ ¿)
0:5x1(t¡ ¿)

¶µ
dB1(t)
dB2(t)

¶
;

where f(x) = arctan(x). For this example we have gT g = 0:04y22+0:25y
2
1 , hence

condition (4) is satis¯ed with C1 = C3 = C4 = 0 and C2 = ¢(0:25; 0:04). In
the matrix Q we set ¡2P + C2 +D = ¡D, where D = ¢(d1; d2). This yields
d1 = 1:875 and d2 = 1:98. It turns out that the matrix Q is given by

Q =

0BBBBB@
¡1:875 0 ¡0:5 0 0:5 0
0 ¡1:98 ¡0:5 1 1 ¡0:333

¡0:5 ¡0:5 ¡1:875 0 0 0
0 1 0 ¡1:98 0 0
0:5 1 0 0 ¡1:875 0
0 ¡0:333 0 0 0 ¡1:98

1CCCCCA ;

which is indeed negative de¯nite. Numerical calculations reveal that

¸ = ¡¸max(Q) = ¡0:3198:
Thus the stochastic neural network is almost surely stable. Suppose, for example,
that ¿ = 0:5, then we are also able to compute the root of equation (5) as 0:3089,
thus the sample Lyapunov exponent is at most ¡0:1545.

5 Conclusion

We have studied a stochastic delay di®erential equation model of a neural net-
work and have established conditions which ensure that the neural network is
almost surely GAS. We are able to provide a bound for the exponential stability
of the network. Thus it becomes clear that GAS is a dynamic for hybrid neural
networks of the type (1) that is robust to stochastic perturbations. After [5],
this is of course to be expected.
The method of proof of the main result of this paper relies heavily on the

methods of [5]. From this point of view we regard the instantaneous signalling



term present in (1) as a kind of nuisance term. It gives rise to the last term
on the right hand side of (5). This is a term that must be nonnegative for the
argument to work. This, in turn, relies on ¯ · 1, where ¯ = f 0. Furthermore,
arguing along these lines, one is able to tolerate di®ering gains, ¯ ¸ 1, for all
operational ampli¯ers involved in the delayed signalling but must bound those
involved in instantaneous signalling to be at most one. Thus we trade the size
of the instantaneous signals.
Finally one is led to seek di®erent forms for V . In this direction, the results

of ([11]) may be utilised to yield alternative stability results. This author is cur-
rently using such techniques to investigate further stability results for stochastic
neural networks.
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