ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

Linear Algebra for Time Series of Spikes

Andrew Carnell! and Daniel Richardson?

University of Bath - Department of Computer Science
Bath - UK

Abstract. The set of time series of spikes is expanded into a vector
space, V, by taking all linear combinations. A definition is then given for
an inner product on this vector space. This gives a definition of norm,
of distance between time series, and of orthogonality. This also allows us
to compute the best approximation to a given time series which can be
formed by a linear combination of some given collection of time series. It is
shown how this can be applied to a very simple learning or approximation
problem.

1 Introduction

We define a spike at time ¢ to be a function s(¢1) of time ¢ so that s(t1)(t) =1
if t = t1, and is zero otherwise. We define a time series to be a finite sum of
spikes,

Zi]\il s(ti)

with tq,...,tyx distinct times.
We define a weighted time series to be a finite sum of the form

S eis(ti)

The coefficients ¢; and the times t; can be any real numbers, and the number
of terms, N, can be any natural number. We let V' be the vector space, over the
real numbers, of weighted time series, with the obvious definitions of addition
and scalar multiplication. V is infinite dimensional with uncountable basis.

We consider the following basic problems. Suppose w1, ..., wy are time series
and suppose also that we are given a goal time series g, and an output neuron
G, which behaves as one of the spiking models discussed, for example in [1]. Let
inp(G) = cywy + - - - + cpwy be input to G. Let out(G) be the output time series
produced by G when given this input.

Problem 1). Find values of weights ¢y, ..., ¢, so that inp(G) is close to g.

Problem 2). Find values of weights ¢y, ..., ¢ so that out(G) is close to g.

In order to say more precisely what “close” means, we define an inner product
on V.

2 Inner Product

An inner product on a vector space, V', over the reals is a function
<wu,w>:V xV — R so that:

363

ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

1. <u,w>=<w,u>.
2. <utv,w>=<u,w>+ <v,w>.
3. <cu,w>=c<u,w >, for any real c.
4. <u,u>>0.

5. <wu,u>=0onlyif u=0.

Because of the linearity of the inner product, and since V' is formed by linear
combinations of spikes, we only need to define the inner product between two
spikes. We define

< 5(t1), s(ty) >= e~ lta=tll/0

where § is some scaling factor.
In general

< ZCiS(ti), Z djS(T’j) >= Zcidjefntifrj”/‘s

We should check that this is an inner product. Suppose u = > ¢;s(t;). In
order to show that < u,u > > 0, define F(u) to be Y c;e'i~*h(t;), where h(t;)
is the function of ¢ which is equal to zero for ¢t < ¢;, and is equal to 1 for t > ;.
We may think of F'(u) as a hypothetical post synaptic response to weighted time
series u. For simplicity, set time scale § = 1.

ST PO F((t2))t = [,y €272t =2 < (1), 5(t2) >
In general [~ F(u)F(v)dt =2 < u,v >. Since [*_F(u)?*dt = 0 if and only if
u =0, we get conditions 4) and 5) above.

From an intuitive point of view < w,v > measures correlation of u and v.

From this we get norm(w) = \/(< w,w >), d(u,w) = norm(u — w), which
gives us a metric on time series. Following the discussion above, we may think
of d(u,v) as a measure of the difference between hypothetical post synaptic
responses to u and v. To give some idea of how this works, suppose § = 1/33, and
time is measured in seconds. Then d(s(t1), s(t; + 0.01)) = 0.75 approximately.

We also get w is orthogonal to w if and only if < u,w > = 0.

Additionally we get Proj,(u) = (< u,w > / < w,w >)w. This is the projec-
tion of u onto direction w. This may be understood as the best approximation
to w which can be expressed as a multiple of w.

Example 1 Take time scale § = 1. Suppose w; = s(1) + s(2),w2 = s(2) +
s(3),ws = s(1) + s(3),u = s(2). Then Proju, (uv) =< u,w; > / < wy,w; >
wy = s(1)/2+s(2)/2. We note that, as expected, u— Proj,, (u) is orthogonal to
Projy, (u). We can use the Gram Schmidt process as usual to find an orthogo-
nal basis for the subspace spanned by (w1, ws,ws). Once we have this orthogonal
basis, we can, as usual, find the best approximation in the subspace to any given
element of V.

364

ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

3 Approximation

We now get some solutions to problems 1 and 2.

3.1 Gram Schmidt Solution to Problem 1

Use Gram Schmidt process on wsi,...,w; to get an orthogonal basis for the
subspace Span(wi,...,wy). Suppose this orthogonal basis is wyx*, ... wy,*. We
can find the best approximation to g in this subspace by

> ciw;x

where ¢; = proju,«(9)
This is guaranteed to give the optimal solution to problem 1), i.e. the unique
linear combination in the subspace which is closest to the goal.

3.2 [Iterative Approximate Solution to Problem 1

Define E = g — inp(G). Until norm(FE) is small, loop:
Pick ¢ at random. Define ch(c;) := Projy, E. Let ¢; := ¢; + ch(c¢;). Then
inp(GQ) = inp(G) + ch(c;)w;.

3.3 Iterative Approximate Solution to Problem 2

Define E = g — out(G). Until norm(E) is small, loop:
Pick i at random. Define ch(c;) := norm(Projy, E)/norm(w;). Let ¢; :=
¢i + ch(c;). Then inp(G) := inp(G) + ch(c;)w;.

4 Testing

The following tests were performed using the iterative algorithm, outlined in
sections 3.2 and 3.3. The purpose of the first set of tests is to demonstrate the
ability of the algorithm to alter weight values ¢y, ..., ¢ such that inp(G) becomes
close to a required goal time series, g. We are attempting to bring the distance
- as defined by norm(g-inp(G)) - between the goal and the input vector to a
minimum.

For each experiment, the goal and each time series that make up inp(G)
consist of 10 spikes that have been randomly drawn from a uniform distribution
in the interval (0,1). The initial values of the weights ¢1, ..., ¢x are set to zero.
All experiments are performed in CSIM, more details of which can be found at
www.lsm.tugraz. at/csim/index.html.

Figure 1A shows a plot of the distance between the goal and inp(G), with
respect to the number of iterations of the algorithm, where inp(G) consists of
just 10 input channels. In this experiment we used a time scale of 1/33; so,
< 8(t1),s(ta) >= e~ 33It1=t2l Tt can be clearly seen that initially, the distance
falls sharply by a small amount before leveling off. The reason for this is simply

365

ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

Distance between the goal and a 10 spike train input vector w.r.t step number. Distance between the goal and a 500 spike train input vector w.r.t step number.

norm(goal-Inp(N))

o 100 200 a 600 700 800 o 100 200 300 500 600 700 800

00 400 500 400
Step Number Step Number

Figure: 1A Figure: 1B
Fig. 1: Distance between the goal and the input vector w.r.t step number, with
inp(G) consisting of 10 (Fig: 1A) and 500 (FiglB) spike trains

Goal spike train ' Goal spike train

1
L ,

L L L A L L L L L L L L n L L ,
0 0.1 02 03 04 05 06 07 08 09 1 0 o1 0.2 03 0.4 05 06 07 08 0.9 1

Output spike train after training Output spike train after training

051

L L L L L L L L , L L L L L A L L ,
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 0.2 03 0.4 05 06 07 08 0.9 1

time(s)

<10° Plot of distance between g and out(N) w.r.t step number x10° Plot of distance between g and out(N) w.r.t step number
s 2
e Sof
& 5
E4 E 4
5 £
s g

0 200 400 600 800 1000 1200 [200 400 600 800 1000 1200

Step Number Step Number

Fig. 2: Randomly generated goal spike trains and the trained output produced
by a LIF neuron and the associated distance between them during training with
inp(G) consisting of 10 (Fig: 2A) and 500 (Fig: 2B) spike trains.

that any initial adjustment to the weight of an input channel is likely to have
the effect of decreasing the distance by a relatively large amount.

Figure 1B is a plot of the same variables, but with inp(G) consisting of 500
input channels. These figures clearly demonstrate that the iterative algorithm
steadily reduces the distance between our goal and our input. Additionally
it is clear that more input channels i.e. more spikes, produce a much better
approximation to our goal.

The second set of experiments is designed to apply the iterative training
algorithm to alter the input weights cy, ..., cx of a spiking neuron which, receives
inp(G) as an input, to produce our goal time series as an output.

The neuron used, G, is a basic Leaky Integrate and Fire (LIF) neuron, with
capacitance, resistance, threshold and resting potential equal to 3.03 x 1073 F,
105 Ohm, —0.045 V, —0.06 V respectively. The time scale of 1/33 was used to

366

ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

match the time constant on which G operates. Similar results were obtained
with different time scales and parameters.

In the top segment of figure 2A we can see our randomly generated goal time
series and in the second segment is the spiking output of the LIF neuron - see
[1] - after training. The neuron output is now somewhat similar to our goal, but
not very. This is linked to the fact that only 10 input spike trains were used.

Figure 2B shows the result of increasing the number of input channels to
500. The much increased diversity of the spikes that populate inp(G) means
that there is a much greater likelihood that we are able to construct our goal
spike train with increased accuracy. The trained output is now extremely close
to our goal.

The third segments of figures 2A and 2B illustrate the course of norm(g-
out(G)) with each iteration of the algorithm. This plot is noticeably different
from the distance plots of figures 1A and 1B. The peaks are due to the adjustment
of weights which then cause the neuron to fire when it is not desired, or to lose
a spike where it is desired. This over adjustment is then corrected by a single
sharp change or series of sharp changes. For the 500 channel case, it can be seen
that the general trend is that the distance decreases as the number of iterations
increases. The distance plot for the 10 channel case shows very little decrease
for the same number of iterations.

It is clear that to construct the input to a spiking neuron in order to produce
an accurate representation of a specific goal time series it is necessary that the
input vectors be highly diverse.

5 Discussion of the Metric d(u,v)

One of the good properties of this metric is that it is continuous with respect
to variation in times of spikes, as well variation of coefficients. We have lim¢_,¢
d(s(t1),s(t2 +€)) = d(s(t1), s(t2)). Also any two weighted time series v and v
are connected by the straight line (1 — z)u + xv, as « goes from 0 to 1.

This should be contrasted with the more usual approach, which is to divide
a time interval into small subintervals, and to represent a time series of spikes
by a vector of zeroes and ones, the length of the vector being the number of
subintervals, and the ith component of the vector being 1 if and only if a spike
occurs in the ith sub-interval. We can then define some metric on these Boolean
vectors, but however this is done it will not vary continuously with small per-
turbations in the times of the spikes. Also it is not always clear what would be a
good path from one Boolean vector to another, especially if they have different
numbers of spikes.

Another good feature of our metric is that it gives a unique optimal solution
to Problem 1), whereas if Boolean vectors are used, the result depends on the
size of the subintervals.

We note that the metric we propose is not new, but is similar, for example,
to the metric used in [3].

367

ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

Let V(I) be vector space V with spikes confined to closed bounded interval
I. Let V(I,k,A) be V(I) with all coefficients having absolute value no more
than k, and with spikes no closer to each other than A.

As usual we define compactness of a space to mean that any infinite sequence
has a subsequence which tends to a limit.

Theorem 1 V(I,k,A) is compact.

Proof. Let (v;) be an infinite sequence of weighted time series from V(I,k, A).
We need to show that this has a limit point in V(I, k, A). Each v; has the form
va:il ¢ij$(tij). The number of terms N; is bounded by length(I)/A. Since there
are only finitely many possibilities for this IV;, there is an infinite subsequence
of (v;) in which N; is constant, say N. Refine (v;) so that this is the case. We
can further refine (v;) so that for each j, the sequences (¢;;) and (¢;;) tend to
limits ¢;* and ¢;* respectively as i tends to infinity. After refining (v;) in this
way v; tends to

N
> i1 G S(t%).
This implies that the firing activity of any finite collection of neurons can be

represented in a finite product of compact metric spaces, which is therefore also
compact.

The significance of this for learning is that any continuous real objective
function achieves its optimal value on a compact set.

6 Discussion

The two problems considered above are subproblems of the more difficult prob-
lem of constructing given stimulus-response patterns. This can be modelled in
the following way. Let S be a time series of spikes on an interval [a, b], and let R
be a time series on a subsequent interval [b, ¢]. Suppose that we give S to every
neuron in a network. The problem would be to pick the weights to the output
in such a way that we get response R at the output of our output neuron. This
should be true for a typical internal state of the network. That is to say, in
accordance with the ideas of anytime computing, we are not allowed to prepare
the network by setting the internal state at the moment when the stimulus S is
given. See [2], [3].

References

[1] W. Gerstner, W. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plastic-
ity, Cambridge University Press, Cambridge, 2002.

[2] T. Natschlager, W. Maass and H. Markram, The “liquid computer”, a novel strategy for
real-time computing on time series, Special issue on Foundations of Information Process-
ing of TELEMATIK, 8 (1): 32-36, 2002.

[3] T. Natschlager, W. Maass and H. Markram, Real Time Computing Without Stable States:
A New Framework for Neural Computation Based on Perturbations, Neural Computation,
14(11):2531-2560, 2002.

368

