
 Averaging on Riemannian Manifolds and 
Unsupervised Learning using Neural Associative 

Memory 
Dimitri Nowicki1,2 and Oleksiy Dekhtyarenko1* 

1 – Institute of Mathematical Machines and Systems,  
42, Glushkov ave., Kyiv 03187, Ukraine  
2 – MIP. Département de Mathématique, 

 Université Paul Sabatier, 31062 Toulouse cedex 04, France, 
 

Abstract: This paper is dedicated to the new algorithm for unsupervised 
learning and clustering. This algorithm is based on Hopfield-type pseudoinverse 
associative memory. We propose to represent synaptic matrices of this type of 
neural network as points on the Grassmann manifold. Then we establish the 
procedure of generalized averaging on this manifold. This procedure enables us to 
endow the associative memory with ability of data generalization. In the paper we 
provide experimental testing for the algorithm using simulated random data. After 
the synthesis of associative memory containing generalized data. Cluster centers 
are retrieved using procedure of associative recall with random starts. 

1. Introduction 

The aim of this paper is to propose a new neural algorithm for unsupervised learning 
and clustering.  

Our algorithm is based on pseudoinverse associative memory [1]. Such a 
memory like other Hopfield-type networks is able to some kind of “unsupervised 
learning”: it can memorize unlabeled data. But such networks could not be used for 
clustering because they cannot generalize: training patterns are memorized “as is”. So, 
the network cannot retrieve cluster centroids from large amount of data patterns.  

This problem is partially solved in [2] and [3]. Authors propose the algorithm of 
adaptive filtering. This algorithm possesses some properties of data generalization but 
weight matrix of the network is not projective. So, the network deteriorates as number 
of memorized data is augmented. Since certain number of training patterns ability of 
associative recall is completely lost.  

Unlike [2], [3] our method always produces projective matrices. Using 
techniques of generalized averaging over Riemannian manifold we construct the 
synaptic matrix of our network. Associative memory with such a matrix contains 
vectors generalizing training data. So, these vectors might be used as centroids of the 
clusters. 

Since our method is based on non-iterative neural paradigm it has a good speed; 
only small number of epochs is needed even for large data sets. This feature makes 
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associative-memory algorithm competitive in comparison with self-organizing maps 
(SOM) of Kohonen [4], the most known neural paradigm used for the purpose of 
clustering. Unfortunately training of SOMs is often very slow; millions of epochs are 
required for training of sufficiently large network.  

We provide experimental evidence for the associative-memory clustering. This 
method was tested using sufficiently large simulated data sets.  

2. The Algorithm 

2.1 Problem statement 

Let us have a training sample containing K patterns x1…xK∈ R
n. Associative 

memory with generalized patterns is constructed as follows: 
At first we divide the training sample into N groups; each group contains m 

vectors. The number m<n should not exceed n; it is more or equal to desired quantity 
of clusters. Then we make N matrices of pseudoinverse associative memory: Ck, 
k=1…N. To join all these instances of associative memory in one matrix we should 
use the procedure of generalized averaging. 

2.2 Generalized averaging on the manifold 

Consider a metric space M with metric ρ(x,y) a finite set Mx N
ii ⊂=1}{ . The element 
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is called the generalized average of points of this set. Similarly, the point 
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is a generalized median of the same set. If M is an Euclidian space generalized 
average and median are usual average and median respectively. Generalized 
averaging is considered in [4], problem of generalized averaging on homogenous 
manifolds might be found in [5].  

2.3 Computing generalized average on the Grassmann manifold 

Here we use representation of points of the Grassmann manifold Gn,m as n×n 
(symmetric) projective matrices of rank m; the metric is induced by the Frobenius 
norm. Hence the problem of generalized average is equivalent to the following 
minimization problem: 
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After some transformations of the objective function we get: 
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Thus the problem (3) has been reduced to finding projective matrix of rank m 
closest to the simple average C of the matrices Ck.  

Such a problem might be solved using Newton or conjugated-gradient methods 
on Grassmann manifold described in [4] but for high-dimensional vectors this became 
computationally hard. In this paper we use a simplified approach. 

Note that the Frobenius norm is invariant with respect to changing orthonormal 
basis. So, we can choose the basis of eigenvectors of C . Let them be ranged by way 
of decreasing of corresponding eigenvalues. In this basis C is diagonal. We choose X 
equal to  
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in this basis; where δk=1; k=1…m and δk=0 otherwise. Such a matrix is the closest to 
C  amongst projective matrices of rank m. Indeed, making non-diagonal elements 
non-zero just increases 2CX − . Since X is diagonal (4) is the optimal solution. Thus 

X is a matrix of projection to the linear hull of m first eigenvectors of C .  

3. Experimental Technique 

The goal of these series of experiments is to demonstrate network’s ability to deal 
with data having predefined “clustered” structure. Training data could be divided into 
subsets grouping around the known centers. We are able to tell when the algorithm is 
able to retrieve these centers.  

3.1. The Data  

All experiments were carried out using 256-dimensional data vectors with bipolar 
component values {+1,-1}. The training set was generated as follows: 

 At first p cluster centers were produced; they were random bipolar vectors with 
equal probability of values. Then, data vectors themselves were constructed by adding 
a bipolar noise to center. More precisely, to make a data vector we took h randomly 
selected components of a center and changed their signs. Noise intensity h was 
random uniformly distributed number from 1 to H. We shall say that H is a cluster 
radius. For each cluster we generated equal number N of data points. We took 
K=1000 for all tests. Before entering to the network data were shuffled.  

3.2. The Network 

At first, N instances of associative memory were trained using pseudoinverse learning 
rule. Each network memorized m randomly picked data vectors. Synaptic matrices of 
these networks were averaged using the algorithm described above; and the resulting 
projective matrix X was obtained. The network with this matrix was used for 
simulations in order to retrieve cluster centers. 



3.3. Finding Attractors  

In order to find attractors we performed examination procedure with activation 
function f(x)=sign(x). Initial point was taken randomly; iterations were continued until 
a fixed point was reached.  

Recall procedure ran T=10000 times; all attractors found were stored. Then the 
attractors were sorted by frequency or distinction coefficient.  

4. Experimental results 

In order to investigate network’s behavior we performed experiments described above 
for different values of parameters. We used a network of 256 neurons and clusters 
with radius H=64. The matrix of the resulting network was computed by generalized 
averaging of N=1000 projective matrices. In these experiments all cluster centers 
were found by convergence from random starts. This was verified by comparing 
attractors found with centers; first p attractors were identical to centers.  
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Fig. 1. Frequencies of attractors of associative clustering network for: 
different m, p=8 (a); different p, and m=p (b) 

Figure 1.a) corresponds to the case of constant number of clusters p=8; we 
varied invariant subspace dimension m. This parameter also means a number of data 
patterns stored in each instance of pseudoinverse associative memory. We can see that 
the algorithm works for large range of m>p. However, if m is large probability of 
convergence to a center decreases and number of spurious attractors grows. For m=32 
these probabilities have the same order; further increasing of m makes them identical; 
and centers will be lost.  

The second series of experiments is related to the case of m=p. In the Figure 1.b) 
attractors are sorted by frequency; difference between centers and spurious equilibria 
decreases as number of clusters grows. For m=p=32 the network was not able to solve 
its task; only 24 centers of 32 were found.  

Figure 2 demonstrates another way of selecting attractors; here they are sorted 
by distinction coefficient r(x,X) with network’s synaptic matrix. Results of this 
experiments show that difference of this measure between centers and spurious 
attractors is much stronger than for frequencies. This ratio is almost the same for 
different network configurations. So, the distinction coefficient might be used to 



reveal centers efficiently. Unfortunately, usage of this criterion combining with 
random starts cannot guarantee that number of network runs was sufficient to retrieve 
all centers. This can be seen from the results in Figure. 2 for p = 32 – only 28 out of 
32 centers were found using the value of distinction coefficient. 
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Fig. 2. Distinction coefficients of attractors of associative clustering network 

for different p, and m=p 

Note also that usage of successive iterations is necessary to find interesting 
attractors. If convergence to a stable state is not performed than the probabilities of 
finding cluster center or any spurious state are practically equal (especially for larger 
m). 

5. Conclusion 

Experimental results described above show that proposed associative memories are 
able to generalize patterns. This makes them a good tool for clustering. Non-iterative 
nature of neural associative memories makes them quite attractive in comparison with 
many other neural algorithms of unsupervised learning.  

Unfortunately, setting the value of parameter m in associative-memory 
clustering algorithms requires some a priori knowledge about data to be clustered. 
This value must be greater or equal than the number of clusters p, but, in the same 
time, must not exceed this number considerably. Moreover, m is bounded by the well 
known limitation on memory capacity of Hopfield-type NNs (which is of order n, 
preferably m<0.3n). This limitation might be eliminated by changing type of the 
manifold and/or metric used in of the main algorithm.  

Note that this approach is based on optimization on Riemannian manifolds. This 
is a powerful technique that could be applied for some other tasks of learning and 
neural networks. In this paper we used specific manifolds (Grassmann). For this 
manifold we selected only one type of distance (based on the Frobenius norm) and 
averaging. Moreover, the solution of corresponding optimization task was not exact. 
We expect that usage of different metric combining with exact geometric optimization 
may yield better performance of the associative-memory clustering. Development of 



appropriate techniques of high-dimensional optimization is a subject of the future 
work.  

The proposed method may also be generalized for wider class of manifolds. In 
this case we should use geometric computation that works for arbitrary manifold (e.g. 
described in [6]). This extension of associative-clustering technique will enable to 
solve wider class of tasks.  
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