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Abstract. This paper derives a stability condition for neural network control
systems which the parameters of the controlled systems are uncertain. The stability
condition can be imposed in training processes to guarantee the stability of the
control systems. The controller is a single hidden layer, feedforward neural
network. The controlled system is assumed to be full-state accessible and can be
modeled as a linear uncertain system. The stability is confirmed by the existence of
a Lyapunov function of the closed loop systems. A simulation result on Van der
Pol’s equation with parametric uncertainty presented to demonstrate an application
of the condition. A modified backpropagation algorithm with a model reference
technique is used to train the controller.

1 Introduction

Neural networks (NNs) have been proposed for use in a broad range of control
applications. Nowadays, there are many approaches used to design a neural network
controller (NNC) [1]-[4]. Regardless of the design approach, the stability of the
control system needs to be systematically verified. Moreover, the problem becomes
more complex when any parameter of the controlled system is uncertain.

Suykens, Vandewalle, and Moor [5] studied the stability of NN control systems
by showing that the control systems could be represented as a two-hidden layer
recurrent NN. As the results, they derived a sufficient condition for absolute stability
and dissipativity of the recurrent NN from a Lur’e-Postnikov Lyapunov function. The
condition was also expressed as a matrix inequality, which could be employed for
controller synthesis. A similar approach presented in the framework of NLq theory
was introduced in [6]. Kuntanapreeda and Fullmer [7] presented a stability sufficient
condition for a class of NN control systems. The controller was a single hidden layer
feedforward NN, with linear output functions at the output neurons. The controlled
system was restricted to be locally hermitian, which was later removed in [8]. A
modified backpropagation training algorithm for adjusting the weights of NNCs was
also proposed in [7]. This modified algorithm imposed the stability condition as the
training constraint so that the stability of the NN control system is guaranteed.

In this paper we extend the works in [7], [8] by deriving a new stability
condition for neural network control systems which the parameters of the controlled
systems are uncertain.



2 Neural Network Control Systems

Consider NN control systems comprising an uncertain system and a feedforward NN
closing the feedback loop as shown in Figure 1. The controlled system is represented
by an n-order state-space model

( )δ,u,xfx =                                                    (1a)

where nx ℜ∈ is the state vector, mu ℜ∈ is the input vector, pℜ∈δ is an uncertain
parameter, and ),0,0(f0 δ= .  It is also assumed that the system can be modeled as
the linear uncertain system

[ ] uBxAAx 0110 ++= α .                                  (1b)

Here nn
0A ×ℜ∈ and mn

0B ×ℜ∈ are nominal constant system and input matrices,

respectively. The system’s uncertainties are represented by nn
1A ×ℜ∈  and ℜ∈1α

where +ℜ∈≤ µα1 .  The pair )B,A( 00   is assumed to be controllable.

Fig. 1: Neural network control systems.

The controller is a full state regulator implemented as a single hidden layer
feedforward NN with a linear output layer. The hidden layer consists of p nonlinear
neurons whose activation functions are hyperbolic tangent. Let  1W and 2W be the
weight matrices in the hidden layer and the output layer, respectively.  The control
law can then be written in the form

                                          ( ) ( ))hFW)t(xWFW)t(u 212 ==                                      (2)

where )h(F  is a p-vector function whose ith component is )htanh()h(f iii = .

3 Stability Condition

Lemma 1 For any nxn
1 ℜ∈Α  and any positive symmetric definite matrix nxnℜ∈Ρ

the following matrix inequality holds:
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where • denotes the Euclidean norm.  Thus, the matrix inequality (3) holds.  �

Proposition 1 The control system, as shown in Figure 1, consisting of the uncertain
system (1) with the NN control law (2) is equilibrium stable in the presence of the
parameter uncertainty if there exists a positive symmetric definite matrix nnP ×ℜ∈
and a matrix pnq ×ℜ∈   such that
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where +ℜ∈a  is a positive constant having the value less than one, nnQ ×ℜ∈  is a
positive symmetric definite matrix, and I  is the identity matrix of dimension p.

Proof:  For all 0tt >  , let the uncertain system be given as (1) with the NNC (2) and

assume P  and q   satisfy (4). Let )t(Px)t(xV T=  be a Lyapunov function
candidate. Using (1b) and (2), the time derivative of  V  along the state trajectory of
the control system is
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By Lemma 1 and µα ≤1 , we obtain
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Using (4) yields
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where •  denotes the Euclidean norm.  Obviously, the first two terms on the right-
hand side of the above equation are less than or equal zero. To complete the proof, we

need to show that the last term, ( )∑
=

−−
p

1i
iiiii )h(f

~
h)h(f

~
2  , is also less than or equals

zero. Since ℜ∈ih  , either 0hi ≥   or 0hi ≤  . For the case 0hi ≥ , we have

0ah))htanh(h()h(f
~

h iiiiii ≥+−=− . Since 1a0 << , 0ah)htanh()h(f
~

iiii ≥−=

for all *
i hh0 <<  where *h  represents the positive root of the equation

0ah)htanh( ii =− . Hence, 0))h(f
~

h)(h(f
~

iiiii ≥−  whenever *
i hh0 << . The

argument for the case 0hi ≤   is completely similar.  Then, the results yields
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whenever ε<x . Therefore, V  is a Lyapunov function of the control system and the
control system is equilibrium stable.    �

4 Simulation result

Consider Van der Pol’s system with parametric uncertainty
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where 2x ℜ∈  is the state vector, ℜ∈u  is the input, and [ ]1.1,9.0∈δ  is the uncertain
parameter of the system. We first model the system in the form of (1b) as follows:
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Next, a model reference technique [3] is employed to train the NNC. The
reference model is selected to have the damping ratio of 0.8 and the natural frequency
of 3 rad/sec. The modified backpropagation algorithm [7] with the stability condition
(4) is used to adjust the weights of the NNC. Here, IQ =  and 5.0a = . The NNC has
two input nodes, four nonlinear hidden nodes, and one output node.  In training the
NNC, a sampling period of 0.001 second is used to gather 2000 data points from the
nominal system. The training iteration was stopped when no appreciable change in the
errors of the successive states of the control system and the reference model.  After
training, the trained weights are found to be
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Note that P  and q , along with the weights, are found directly from the training as
the by-products of the training process. Figure 2 shows the comparison of responses
between the NN control system and the reference model. The simulation shows
satisfactory control result and is consistent with the derived stability condition.

5 Conclusion

The stability condition for neural network control of uncertain systems have been
derived in this paper. A modified backpropagation algorithm imposed the derived
stability condition as the training constraint is used to adjust the weights of the neural
network controller. The stability is achieved by showing the existence of a Lyapunov
function of the closed loop system.



Fig. 2: Comparison of responses.
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