
Efficient Evolutionary Optimization Using
Individual-based Evolution Control and Neural

Networks: A Comparative Study

Lars Gräning1 and Yaochu Jin2 and Bernhard Sendhoff2

1- Department of Neuroinformatics, Technical University of Ilmenau
P.O.Box 100565, 98684 Ilmenau, Germany

2- Honda Research Institute Europe
Carl-Legien-Str. 30, 63073 Offenbach/Main, Germany

yaochu.jin@honda-ri.de

Abstract. To reduce the number of expensive fitness function evaluations
in evolutionary optimization, several individual-based and generation-based
evolution control methods have been suggested. This paper compares four
individual-based evolution control frameworks on three widely used test
functions. Feedforward neural networks are employed for fitness estima-
tion. Two conclusions can be drawn from our simulation results. First, the
pre-selection strategy seems to be the most stable individual-based evolu-
tion control method. Second, structure optimization of neural networks
mostly improves the performance of all compared algorithms.

1 Introduction

It has been shown that evolutionary algorithms are very powerful in solving
many real-world optimization tasks such as design optimization, see e.g., [1].
In order to reduce the number of time-consuming fitness evaluations, one idea
is to estimate the fitness using computationally efficient meta-models [2]. In
this work, artificial neural networks are used due to their strong approximation
capability [3]. One problem to deal with in real-world optimization problems is
that it is difficult to acquire enough training data to achieve sufficiently good
approximation, which could result in false convergence [4]. Therefore it is not
advisable to use only the neural network as a surrogate for the original fitness
function. To avoid false convergence, the neural network model should be used in
conjunction with the original fitness function. This is termed evolution control or
model management [4]. If evolution control is used, new data become available,
which can then be used for on-line neural network training during optimization.
In this paper, we compare four individual-based evolution control methods which
will be described in the next section.

2 Individual-Based Evolution Control Methods

In individual-based evolution control methods, the main issue is to determine in
each generation which individuals should be evaluated using the expensive fitness
function and which should be estimated. In the following, four individual-based



strategies are described. As illustrated in Fig. 1, the four methods can be de-
scribed in a common framework. First, λ’ offspring individuals are generated
from µ parents using recombination and mutation. After that, the individual-
based control method determines which λ∗ offspring are evaluated with the orig-
inal fitness function. The evaluation results are used to train the neural network
before the fitness of the remaining λ’−λ∗ offspring is estimated by the neural
network. Finally, µ parents are selected from the best λ individuals according to
their fitness. This procedure repeats until a termination condition is satisfied.

λ−λ’ ∗

’

µ

Individual−based
control strategy

Selection

Original Fitness
Function

λ
Recombine/Mutate

Neural Network

Online
Learning

λ∗

λ

Fig. 1: A generic framework for evolutionary optimization using individual-based
control methods.

2.1 Best Strategy (BS)

In the best strategy [4], λ′ = λ offspring are evaluated with the neural network
and the λ∗ best ones are re-evaluated with the original fitness function. After
training the neural network the remaining λ′−λ∗ individuals are evaluated again
with the neural network. The µ best individuals from the λ individuals become
parents of the next generation.

2.2 Pre-Selection (PreS)

In the pre-selection strategy [5], λ′ > λ offspring individuals are generated
through recombination and mutation, and the neural network is used to esti-
mate the fitness value of the offspring. The λ∗ = λ most promising individuals
are pre-selected from the λ’ offspring and re-evaluated using the original fitness
function. The main difference to the best strategy is that the µ parents are se-
lected only from the λ∗ individuals evaluated using the original fitness function.

2.3 Clustering Technique (CT)

In [6], a different approach is presented to determine which individuals are to
be evaluated with the original fitness function. Using the k-means clustering
technique, the λ′ = λ offspring individuals are grouped into λ∗ clusters. Now



the λ∗ individuals closest to the cluster center are evaluated using the original
fitness function. The results of the fitness evaluations, as in other methods, are
used to train the neural network. The fitness value of the remaining λ′ − λ∗

individuals is estimated using the neural network. Finally, µ individuals are
selected from all λ′ offspring as parents of the next generation.

2.4 Clustering Technique with Best Strategy (CTBS)

The clustering technique with best strategy is extended from the clustering tech-
nique. The offspring individuals are grouped into λ∗ clusters. After clustering,
the neural network is used to estimate the fitness of individuals. Instead of the
individual closest to each cluster center, the best individual in each cluster will
be evaluated with the original fitness function.

3 Structure Optimization of the Neural Network

To improve the approximation quality of the neural network, the structure of
the neural network can also be optimized during the design optimization. A
genetic algorithm has been used to optimize both the structure and the weights
of the neural network. In generating offspring, specific mutation operations are
employed. The mutation operations allow to insert or delete a single connection
or neuron, and the weights are mutated by adding a normally distributed random
number. After mutation, life-time learning of the weights is performed and
the learned weights are coded back to the individuals, which is known as the
Lamarckian mechanism. The EP-tournament-selection is adopted to reproduce
the individuals representing the neural networks with the lowest mean squared
error on the training data. See [7] for details.

4 Simulation Results

In the simulations, a (µ, λ) covariance matrix adaptation evolution strategy with-
out recombination [8] is adopted, where µ is fixed to 3 and λ is fixed to 12. The
strategy parameters of the covariance matrix are initialized between σmin = 0.05
and σmax = 4. The settings of λ’ and λ∗ listed in Table 1 are based on recom-
mendations or findings in [5] and [6]. The maximum number of expensive fitness
evaluations is 1200.

PlainES PreS BS CT CTBS

λ’ 12 24 12 12 12

λ∗ 12 12 6 6 6

Table 1: Settings of the parameters λ’ and λ∗.

The neural network used in the simulations consists of 10 input nodes, one
hidden layer with four hidden neurons and one output. If structure optimization
is used the number of hidden neurons is not fixed. An improved version of the



RProp algorithm is used to train the MLP online during optimization. To achieve
good local approximation of the original fitness landscape, only data of the most
recent 50 evaluations are used for training.

(a) (b)

Sphere

126 366 606 846 1086

10
−4

10
−2

10
0

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

126 366 606 846 1086
10

−4

10
−2

10
0

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Rosenbrock

126 366 606 846 1086

10
1

10
2

10
3

10
4

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

126 366 606 846 1086

10
1

10
2

10
3

10
4

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Ackley

126 366 606 846 1086
10

−3

10
−2

10
−1

10
0

10
1

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

126 366 606 846 1086

10
−2

10
−1

10
0

10
1

Exact Evaluations

F
itn

es
s

plainES
PreS
BS
CT
CTBS

Fig. 2: Results from the three 10-dimensional test functions. (a) Without struc-
ture optimization, and (b) with structure optimization.

The results from the Sphere, Rosenbrock and Ackley function are presented
in Fig. 2 and Fig. 3. The left column presents the results with and the right
column without structure optimization of the neural networks. In Fig. 2, the
median of the best fitness in each generation over 20 runs are plotted against
the number of expensive fitness evaluations.

To show the statistical significance between the evolution control methods
and the plain evolution strategy, the boxplot of the results are given in Fig. 3.
The boxplot illustrates the median and the variance of the fitness value of the
best individual in the final generation over 20 runs. The notches of the boxes in
the plot are the graphical equivalence to the student t-test. If the notch in the



boxplot of the two strategies overlap, there is no significant difference between
the medians of the strategies at a significance level of p = 0.05.

(a) (b)

Sphere

plainES PreS BS CT CTBS

10
−5

10
−4

10
−3

10
−2

F
itn

es
s

plainES PreS BS CT CTBS

10
−5

10
−4

10
−3

F
itn

es
s

Rosenbrock

plainES PreS BS CT CTBS

10
0

10
1

10
2

10
3

F
itn

es
s

plainES PreS BS CT CTBS

10
1

10
2

10
3

F
itn

es
s

Ackley

PlainES PreS BS CT CTBS

10
−2

10
−1

10
0

F
itn

es
s

plainES PreS BS CT CTBS

10
−2

10
−1

10
0

F
itn

es
s

Fig. 3: Boxplot of the best fitness in the final generation over 20 runs after 1200
exact fitness evaluations are done. (a) Without structure optimization, and (b)
with structure optimization.

From Fig. 2 and Fig. 3, we can see that all evolution control methods except
the best strategy improve the performance of the plain evolution strategy sig-
nificantly on the 10D Sphere function. But there are no statistically significant
differences between the model-assisted strategies themselves, no matter whether
structure optimization of the neural networks are conducted or not.

It turns out that the clustering technique with best strategy outperforms
other algorithms on the 10D Rosenbrock function, when no structure optimiza-
tion of the neural network is carried out. However, all algorithms fail to improve
the performance of the plain evolution strategy significantly. This result may
be attributed to the fact that the number of hidden neurons is not sufficiently
large to approximate the Rosenbrock function. Meanwhile, the result indicates
that with structure optimization, the neural networks perform locally very well



on the Rosenbrock function.
From Fig. 2, it can be seen that the individual-based evolution control meth-

ods perform well on the Ackley function. But as we can see in the boxplots
in Fig. 3 the variance of the strategies are very high except the pre-selection
strategy. The pre-selection strategy outperforms the plain evolution strategy in
almost all of the 20 runs.

5 Conclusion

In this paper, we compared four individual-based evolution control strategies on
three test functions. Neural networks with or without structure optimization
are used for estimating the fitness. From our results, we showed that the pre-
selection strategy is the most promising one among the compared individual-
based control strategies. The clustering based approaches are not as good as in
[6] mainly because a single network instead of network ensembles has been used
in this study.

The future work will be to adapt the number of individuals to be controlled
during optimization and to use neural network ensembles instead of a single net-
work. The pre-selection and the clustering based strategies will be implemented
in design optimization of three-dimensional turbine blades.

References

[1] M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff. Optimisation of a stator
blade used in a transonic compressor cascade with evolution strategies. In Adaptive
Computation in Design and Manufacture, pages 45–54. Springer, 2000.

[2] Y. Jin. A comprehensive survey of fitness approximation in evolutionary computa-
tion. Soft Computing, 9(1):3–12, 2005.

[3] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[4] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization
with approximate fitness functions. IEEE Transactions on Evolutionary Computa-
tion, 6(5):481–494, 2002.

[5] H. Ulmer, F. Streichert, and A. Zell. Evolution strategies with controlled model
assistance. In Congress on Evolutionary Computation, pages 1569–1576, 2004.

[6] Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and
neural networks ensembles. In Genetic and Evolutionary Computation Conference,
volume 3102 of LNCS, pages 688–699. Springer, 2004.

[7] M. Hüsken, Y. Jin, and B. Sendhoff. Structure optimization of neural networks for
aerodynamic optimization. Soft Computing Journal, 9(1):21–28, 2005.

[8] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–196, 2001.


