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Abstract. In this paper we construct a graph-based normalisation al-
gorithm for non-linear data analysis. The principle of this algorithm is
get, in average, spherical neighborhood with unit ray. In a first paragraph
we show why this algorithm can be useful as a preliminary for some neu-
ral algorithms as those that need to compute geodesic distance. Then we
present the algorithm, its stochastic version and some graphical results.
Finally, we observe the effects of algorithm on reconstruction of geodesic
distance by running Dijksrta’s algorithm [1].

1 Introduction

New data analysis methods, based on curvilinear or geodesic distance (as for
instance ISOMAP [2] or curvilinear distance analysis [3]) seem to be relevant
to solve non-linear problems. In fact geodesic (or curvilinear) distance between
two points in a set E is the minimal length of a continuous path included in E
that links the two points. As illustrated in figure 1 such a distance is relevant
for non-linear data-set.

Fig. 1: curvilinear (plain) and Euclidian (dashed) distance for two points on a
spiral

For theoretical and infinite sets of points there is no normalisation problem.

Fig. 2: curvilinear distance on a spiral for different scaling



For finite and discrete data a normalisation problem appears. That is linked
to the fact that the computed graph (MST , K−nearest neighbors...) used before
computing curvilinear distance depends strongly on the scale on the different
axes.
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Fig. 3: 3− nearest neighbors graph for classically normalized data for Y =
sin(ωX), X ∈ {5, 10, ...55, 60}

2 Graph-Based Normalisation

2.1 Principle

Let us first observe that when sets are non-linear the use of ”classical” normali-
sation that studies the global dispersion around a central indicator (usually the
barycenter) won’t be useful. Non-linear sets study needs local indicators. Our
algorithm is based on the principle of making neighborhoods spherical and of
ray 1 (in average).



2.2 Proposed algorithm

In this section we denote by X the set of points (N points in �d). Notations are
Xi the ith row vector of X (∈ �d).
Xj the jth column vector of X (∈ �N ).
We chose a graph structure (MST or k−nearest neighbors) and characterize

it by its matrix GX (GX
i,j = 1 if and only if [Xi, Xj] is an edge of the graph and 0

otherwise). The graph definition leads us to find neighborhoods (the neighbor-
hood of a point Xi is defined by all the points Xj such that GX(Xi, X, j) = 1).

2.2.1 Exhaustive version

To make neighborhoods spherical we compute all the edge vectors �y = �XiXj if
GX(i, j) = 1 or GX(j, i) = 1 . We get a data set Y of N ′ vectors with null mean
that represents neighborhoods directions.

To make the neighborhoods spherical we only apply PCA analysis on Y that
gives a P isometric matrix.

GX = GPX because P is an isometric transformation.
Applying X := PX rotates the edges of GX so that they are Y = PY with

a diagonal covariance matrix.
To make the average ray equal to 1, we define the weight wj of the jth axis

as follows.

wj =
1

N ′
∑

i�=j,G(i,j)=1

|Y j
i |

And finally we apply Xj = Xj/wj to normalize edge’s size to 1.
This transformation changes everything in the graph organisation so de-

scribed steps have to be iterated. Observation of convergence (stability) is given
by the indication of :

The P isometric transformation (we characterize it by the maximum rotation
angle).

The wj weights we expect to be equal to 1.
The following graphs illustrate results of the algorithm. For each example,

the the graph for classically normalized data is first presented, then the PCA
cumulated inertia, the maximum of rotation, the weight of axis and, finally, the
MST for graph-normalized data.

The first examples are sinusöıdal sets with different frequencies.
The second ones are sinusöıdal sets with gaussian perturbation and π/4 ro-

tation. X2 = sin(ωX1) + σε with ε → N(0, 1) and X = QX Q π/4 rotation
matrix.

We observe quite encouraging results even if, for too big frequencies, we can’t
reconstruct data organisation. This saturation effect occures quicker when data
are rotated.
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Fig. 4: 500 points with X1 = unifrnd(0, 1) and X2 = sin(ωX1) with ω ∈
{50, 80, 100}
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Fig. 5: Rotated examples : (1) ω = 50, σ = 0,(2) ω = 50, σ = 0.1, (3) ω =
50, σ = 0.2,(4) ω = 70, σ = 0



2.2.2 Stochastic version for the algorithm

As the running time may be long because of the computation of different graphs
at each step of the algorithm we propose here a stochastic version for huge data
sets (practically more than 1000 points).

First we choose a graph structure (k−nearest neighbors, Minimal spanning
tree...) which will be used in the whole algorithm

Iterate :
While it <= NbIt
(1) select N ′ < N points that form the set X ′

(2) compute GX′

(3) compute Y ′ edge vector and run PCA (obtain P ′ isometric)
(4) apply X := P ′X and Y ′ := P ′Y ′

(2) ∀j compute w′
j on Y ′

(3) ∀j Xj := Xj/wj

As the edges of the partial data-set are bigger than those of the complete one,
this algorithm won’t converge to a weight of 1 for all directions on the complete
data set, but to a graph that has the same weights for all directions.

We present here results for 3 − D sinusöıde with N = 1000, N ′ = 500 and
it = 50 with MST−based normalisation and representation of the 8−Nearest
Neighbor graph

Fig. 6: Results for 3 − D sinusöıde

3 Impact on the geodesic distance

In this section we want to observe the impact of our normalization on the geodesic
distance. As the theoritical study is in progress we can only give empirical
results based on examples. We, here, simulate sinusöıdal sets X1 ↪→ U [0, 1]
and X2 = sin(ωX1) so the ”true” geodesic distance dc(Xi, Xj) only depends of
|X1

i − X1
j |.

We randomize 100 points.
For example we observe 8−nearest neighbors graph of Y and the points
ˆdc(Yi, Yj v.s. |X1

i − X1
j |.



were Y is, first, X normalized by division by standard deviation, then X
MST -based normalized. And d̂c(Yi, Yj) is the Didjkstra’s geodesic approxima-
tion with a 8−nearest neighbors graph.
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Fig. 7: 8−nearest neighbors graph and plot of ˆdc(Yi, Yj v.s. |X1
i − X1

j | for
classical normalization and MST -based normalization 1 ω = 10 and 2 ω = 20

As there is only 100 points (Dijkstra’s algorithm is very heavy) we can only
test small frequencies but results for geodesic computation are quite promising.

4 Conclusion and further work

We can observe that the proposed algorithm might be useful for preliminary
treatment before applying non-linear data analysis methods such as those that
use geodesic distance. We would now like to prove it and to determinate which
graph choice is the more relevant to be used in the algorithm. Empirically MST
and 1−nearest neighbors seems to be better but we would like to know why.
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