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Abstract. We investigate the effects of patchy (clustered) connectivity in sparsely 
connected attractor neural networks (NNs). This study is motivated by the fact that 
the connectivity of pyramidal neurons in layer II/III of the mammalian visual 
cortex is patchy and sparse. The storage capacity of hypercolumnar attractor NNs 
that use the Hopfield and Willshaw learning rules with this kind of connectivity is 
investigated analytically as well as by simulation experiments. We find that patchy 
connectivity gives a higher storage capacity, given an overall sparse connectivity 
and regardless of learning rule.  

1 Introduction 

Attractor neural networks (NNs) have been proposed [1, 2] as a first, abstract, model 
of the neocortex. Topologically, these networks are similar to the neocortex in having 
a large number of recurrent connections, but if they approximate the dynamics of 
cortex is still an open question. Recently, experimental evidence of attractor states has 
been found in neocortical slices [3, 4]. 
 The mammalian visual cortex is organized in columns, in addition to its layered 
structure. Two types of columns have been observed, small minicolumns with a 
diameter of ~50µm and large hypercolumns with a diameter of more than 200µm [5, 
6]. The hypercolumns in primary visual cortex were first described by Hubel and 
Wiesel [7]. They are also found in the somatosensory cortex [6] where they are 
sometimes referred to as macrocolumns, segregates, or barrels. Hubel and Wiesel 
showed by electrophysiological experiments in primates that the hypercolumn can 
function as a competitive, winner-take-all (WTA), circuitry for line orientations [7, 8]. 
Lateral connections in layer II/III of the visual cortex tend to terminate in clusters 
(patches) with a size similar to hypercolumns [9-12]. These lateral connections are 
highly convergent, meaning that the neurons in one hypercolumn connect to the same 
set of hypercolumns forming a patchy pattern of connections [11, 12]. Connectivity is 
sparse in the neocortex, which is a necessity to keep down the amount of wiring. 
 We here use a model of neocortex in which the minicolumns are the functional 
units [5, 6]. The minicolumns are grouped into hypercolumns that implement a WTA 
function over the minicolumns, controlling the activity level in the network. In the 
next section we describe hypercolumnar attractor NNs that use the Hopfield and 
Willshaw learning rules. The effect of clustered connectivity in these NNs is then 
investigated both analytically, with signal-to-noise analysis that is valid because of 
the sparse activity [13], and by simulations. Clustering is implemented such that in the 
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extreme case of fully clustered connectivity, two hypercolumns are either fully 
interconnected (at the minicolumn level) or not at all. We contrast this to random 
connectivity, where individual minicolumns are independently wired. We further 
distinguish three modes of clustered connectivity. (I) Clustering applies to incoming 
connections; one minicolumn tends to receive connections from either all units in a 
hypercolumn or from none. (II) Clustering applies to the outgoing connections; one 
minicolumn tends to project either to all minicolumns in a hypercolumn or to none. 
(III) The first two modes are combined, making connections between hypercolumns 
reciprocal i.e. fully clustered connectivity. 

1.1 Attractor Neural Networks with Hypercolumns  

The Hopfield learning rule leads to real-valued synaptic weights, whereas the 
Willshaw learning rule gives binary weights. The NN has N units grouped into H 
hypercolumns with U units in each (for simplicity we let all hypercolumns consist of 
the same number of units). Throughout the paper we will use H=U=40. In a NN with 
a fully ordered connectivity (100% clustering) all connections are located in a fraction 
of the H2 potential hypercolumn-blocks (Fig. 1, left). In the case of random 
connectivity the connections are randomly distributed between all units (Fig. 1, right). 
In the center of Fig. 1 an intermediate between these two extremes is shown. For all 
levels of clustering the number of inputs to a unit is constant. 

 
Fig. 1: Three connectivity matrices, where black represents the existence of a 
connection between two units; left 100% clustering, center 50% clustering, and right 
0% clustering. All matrices are derived from the 100% clustered matrix. The average 
connectivity in all three matrices is 20%. No self-connections within a hypercolumn. 

 The NNs are trained with P unary coded random patterns, ξµ. The activity of one 
unit in each hypercolumn is set to 1, the activity of the others to 0. In the following 
we present the Hopfield and Willshaw learning rules, where a=1/U is the mean 
activity: 
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The retrieval procedure, which is based on WTA within each hypercolumn, is the 
same for both NNs, where s is the support of a unit, o is its activity, h is the index of a 
particular hypercolumn, Qh is the set of all units belonging to hypercolumn h and yij 
are binary variables indicating which of the possible synaptic connections are present. 
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1.2 Analysis of the Storage Capacity for the Hopfield Learning Rule  

Our network uses either the Hopfield or Willshaw learning rule, masked by a matrix 
Yij describing which of the potential connections are present. The synaptic weight 
matrix will be given as Zij=XijYij where Xij is the weight matrix given by the chosen 
learning rule. We introduce a clustering parameter C running from 0 for the randomly 
connected network to 1 for the fully patchy connectivity. In the latter case we have a 
block structure; each unit receives input from K full hypercolumns and from those 
only. The masking matrix is split into a “block” part Yij

A and a “non-block” part Yij
B. 

For the fully clustered, C=1, case the probability for nonzero entries is one in the 
former and zero in the latter. In general, the masking is given by stochastic variables 
[Pr(Yij

A=1)=pA; Pr(Yij
A=0)=1−pA] where pA=C+(1−C)d and [Pr(Yij

B=1)=pB; 
Pr(Yij

B=0)=1−pB] where pB=(1−C)d. Here, d is the average connectivity. It follows, as 
it should that, Yij

A and Yij
B have the same distribution when C=0.  

 We now proceed to calculate the Xij for the Hopfield learning rule. These 
weights Xij can be expressed as a sum over P stochastic variables, one for each 
training pattern; 1 P
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for the support values for each unit and therefore we calculate the mean and variance 
of Xij

µ, yielding E(Xij
µ)=0, V(Xij

µ)=(U−1)2/U4. The support, Si, that each unit receives 
when pattern ξµ is applied as input is 
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We now treat separately the cases for units participating, denoted by +, and not 
participating, denoted by −, in the active pattern ξµ. Next we compute the mean and 
variance for the four different cases of Zij as E(Zij

A/B,+/−)=E(Yij
A/BXij

+/−) and 
V(Zij
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In the + case these are computed from a bimodal distribution with centers at 0 and x. 
The mean and variance of Si

− and Si
+ are then computed using the central limit 
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 Let ΦS¯ be the normal distribution function of the stochastic variable Sj
− and FN 

the cumulative distribution function of a variable N=maxi≠j{Sj
−} where i is the unit 

that participates in the active pattern, then:  
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Now we may write the probability that the unit participating in the active pattern has 
the largest support in a hypercolumn as; 
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where f denotes probability density functions and F cumulative probability density 
functions. The probability that all hypercolumns in the NN will have the same units 
active as those in the original, noise free, pattern is ppattern=(phyper)H. The average 
number of correctly retrieved patterns is Pppattern, where P is the number of trained 
patterns. If N is approximated by a normal distribution, phyper can be computed as 
{Z=S+−N, phyper=1−P(Z≤0)=Φ(−mZ/σZ)} which requires less computations than 
evaluating the integral form above. 

1.3 Analysis of the Storage Capacity for the Willshaw Learning Rule  

The probability that a certain synapse in the Xij matrix is nonzero, when storing a 
single pattern using the Willshaw learning rule is p0=1/U2. After storing P patterns, 
the density of ones in the memory matrix is p1=1−(1−p0)P.  
 We now consider the stability of patterns. Just as in the Hopfield case, we first 
study one hypercolumn. We calculate the support level of the unit that is part of the 
active pattern, S+, and that of the other units, Si
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where the ZA are the contributions from the “blocks” and the ZB are from the “non-
blocks”. These stochastic variables, Zh, are in fact the same as Zij:ξj

µ=1 and they take 
the value 1 when a connection exists and both the pre- and postsynaptic units have 
been activated simultaneously in one of the patterns. The latter is always true for the 
"+" units, in the active pattern. Assuming independence between the “blocks” and 
“non-blocks”, the sums become binomial distributions: 
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Similar to the case of the Hopfield learning rule we can compute the probability for 
stable recall in one hypercolumn  
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and the probability that all hypercolumns are stable is ppattern=(phyper)H, which is also 
the expected ratio of stable patterns for a given memory load. As in the previous 
section we can now determine the storage capacity as the maximum storable patterns 
Pppattern.  



2 Results 

In Fig. 2 (left) experimental data on the storage capacity for two different types of 
learning rules is shown together with analytical estimates. For both learning rules the 
positive effect of clustered connections is clearly seen. This effect was found to be 
most prominent for sparse connectivity and it was also present in a standard network 
using global KWTA thresholding. The storage capacity was tested with retrieval cues 
based on the stored patterns, in which the activity of 20% of the hypercolumns had 
been randomly changed. The relaxation process stopped when a stable pattern was 
found or when more than 20 iterations had passed. A pattern was classified as 
retrieved if it had a 100% match with the stored pattern. It is worth noting that 
although the connection matrices were asymmetric the NNs converged to a fix-point 
in almost all retrievals.  

In Fig. 2 (right) three different types of connectivity matrices are compared. 
Case I, where all units in a hypercolumn connects to a single unit, gives a NN with a 
storage capacity very similar to that of case III when entire blocks of connections are 
used. Case II, where a single unit connects to an entire hypercolumn, which results in 
a NN with a storage capacity smaller than that of either case III and I.  
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Fig. 2: (Left) The experimentally and analytically derived storage capacities plotted as 
a function of the clustering. (Right) The storage capacity when using the Hopfield 
learning rule is plotted for three different connectivity matrices. Case III is the type of 
connectivity matrices shown in Fig. 1, in case I a unit receives input from an entire 
hypercolumn at 100% clustering, and in case II a unit connects to an entire 
hypercolumn. The analytical estimate of the storage capacity when the Hopfield 
learning rule is used is based on a normal approximation which is accurate in the limit 
N,H→∞. Parameters: N=1600, H=40, U=40, d=20%. 

3 Discussion 

In this paper we have shown that an attractor NN with sparse and patchy (clustered) 
connectivity has a larger storage capacity than one with sparse and random 
connectivity. We demonstrate that this is due to a better signal to noise ratio of the 
support values. Based on this finding we suggest that the patchy connectivity seen in 
the visual cortex [9-12] have a computational advantage over a random connectivity. 
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This adds to previous physical arguments for patchy connectivity such that it 
minimizes wiring (and thus volume) while maximizing connectivity. Taken together, 
it is obvious that a clustered connectivity is very advantageous.  
 We found that the most important aspect of the clustered connectivity is that all 
units, in a hypercolumn, connects to the same postsynaptic units (case I). This type of 
connectivity resulted in a signal to noise ratio similar to that of block wise connec-
tivity (case III). Furthermore, this type of patchy connectivity between hypercolumns 
has been found in the visual cortex by experiments with retrograde tracers [11, 12]. 
 Given the physical and computational benefits of a clustered connectivity it 
seems very plausible that this is a generic design principle that also applies to other 
parts of cortex. A columnar structure is found also in e.g. the somatosensory cortex, 
but in associative cortical areas it is less apparent. We argue that a columnar structure 
and patchy connectivity is a general design principle in neocortex.    
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