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Abstract. We propose relevance determination and minimisation schemes
in reinforcement learning which are solely based on the Q-matrix and which
can thus be applied during training without prior knowledge about the sys-
tem dynamics. On the one hand, we judge the relevance of separate state
space dimensions based on the variance in the Q-matrix. On the other
hand, we perform Q-matrix reduction by means of a combination of Q-
learning with neighbourhood cooperation of the state values where the
neighbourhood is defined based on the Q-values itself. The effectivity of
the methods is shown in a (simple though relevant) gridworld example.

1 Introduction

Reinforcement learning (RL) provides an elegant framework for modeling bio-
logical and technical reward-based learning. Since RL algorithms only require a
scalar reinforcement signal, they are ideally suited for complex real-world appli-
cations where the optimal solution and possibly also the system dynamics are
not known beforehand, such as self-exploring robots, complex control, and the
synthesis of non-trivial motor behaviour [1, 2]. Q-learning which directly learns
a strategy without prior inference of a model has been invented by Watkins and
it has been pioneered and mathematically investigated by different researchers,
see e.g. [3, 4, 5]. A potential problem of RL and Q-learning is given by the size
of the search space. States are often high dimensional and the state variables
might contain a large number of qualitatively different, even continuous values.
In such cases, RL is only feasible if a good heuristic to shape the search space
can be found such as bootstrapping methods, a split into separate modules,
an equivalent representation of the search space with lower cardinality or an
approximation or shaping of the value function [4, 6, 7, 8, 9].

These solutions are often time consuming and situation dependent, and global
convergence is not necessarily guaranteed. Thus, the question of a universal
model minimisation algorithm arises. Recently, Ravindran and coworkers pro-
posed an interesting general framework based on work of Dean et al. which
allows a minimisation of the model based on general assumptions [10, 11]. Basi-
cally, they identify equivalence classes of the state space which behave identically
with respect to the model dynamics and the reward gained in these states. This
formulation yields a standard model minimisation procedure comparable to the
classical minimisation of finite automata. Their method, however, assumes that
the model dynamics as well as the rewards are known, and a model minimisa-
tion is performed prior to training. Q-learning has been proposed for situations
where no prior knowledge about the process and the expected reward is avail-
able, and training takes place solely based on the observed rewards. Here, we



propose two methods for model minimisation for Q-learning which transfer the
idea of equivalence classes to the Q-matrix and which do not require any prior
information about the dynamics: relevance determination of state space dimen-
sions by means of the Q-matrix variance and an extension of Q-learning by
neighbourhood cooperation induced by the Q-values themselves.

2 Q-matrix learning and state space equivalence

We consider the objective of learning a strategy with maximum overall dis-
counted reward at time t:

∑

i γirt+i where rt+i is the reward at time t + i and
γ < 1 is the discount factor. Standard one-step Q-learning [3] finds an optimal
strategy by means of the following iterative update:

Qst,at
← Qst,at

+ α
[

rt+1 + γmaxa(Qst+1,a − Qst,at
)
]

where st and at are the state and action at time t and α is the learning rate.
In the limit, Qs,a estimates the expected overall reward when taking action
a in state s. An optimal strategy can be derived thereof chosing the action
argmaxaQst,a with maximum overall expected reward in state st.

The state space often contains a large (or even infinite) number of states s
and convergence of Q-learning is slow. A general method of reducing the state
space prior to learning without altering the system dynamics has recently been
proposed by Ravindran: states are divided into equivalence classes where two
states s and s′ are equivalent if (i) the immediate reward gained in state s and s′

is identical, and (ii) the probability of reaching a specific equivalence class is the
same for s and s′. In this scenario, it is sufficient to work on the (smaller) number
of equivalence classes instead of the full state space. This approach has the
drawback that the immediate reward and the system dynamics need to be known
prior to training; it is therefore not applicable in an unknown environment, the
standard situation of Q-learning. We now transfer this idea into a formulation in
terms of the Q-matrix. The conditions (i) and (ii) ensure that a strategy with the
same overall expected reward can be chosen from every two states s and s′ in the
same equivalence class, as shown in [11]. Note that this formulation ensures that
the set of qualities of all strategies reachable from s and s′ coincides for s and
s′. A simpler criterium which only ensures that the same optimum value can be
reached from s and s′, however, can be directly tested by means of the Q-values:
s and s′ are equivalent if and only if maxa Qs,a = maxa′ Qs′,a′ . As another
sufficient condition, one can identify state-action pairs where Qs,a = Qs′,a′ .

3 Reduction based on Q-values

Based on this argument, we propose two different algorithms which reduce the
state space during training based on the approximate Q-values. Naturally, we
can restrict ourselves to promising regions of the search space which are visited
during state space exploration and within an optimum strategy.
Variance based relevance determination (VRL): VRL aims at reducing
the dimensionality of the search space by estimating the relevance of the in-
put dimensions. For this purpose, we compute the average variance of the Q-
values for each search space dimension. This measure roughly estimates the
degree of violation of the equality Qs,a = Qs′,a′ if elements along a specified



dimension are put into the same equivalence class. Assume s = (s1, . . . , sM ) ∈
R

M . Then the relevance of dimension d for the pair (s, a) is defined as ξd
s,a =

1

Nd−1

∑Nd

sd=1
(Qs,a − Ed(Qs,a))

2
where {1, . . . , Nd} is the enumeration of the dth

dimension and Ed(Qs,a) = 1

Nd

∑Nd

sd=1
Qs,a denotes the expected value within the

corresponding dimension. ξd ∼
∑

s,a ξd
s,a indicates which dimensions are most

irrelevant and can be discarded with the least impact on the solution.
Neighbourhood cooperative Q-learning (NRL): The second approach aims
at identifying equivalence classes of a more sophisticated form which are not par-
allel to state space axes. Since, on the one hand, the equality Qs,a = Qs′,a′ is
only approximately fulfilled for equivalent pairs in early stages of training, and,
on the other hand, a false identification of non-equivalent pairs with similar Q-
values might be fatal, we use a soft approach which adapts all Q-values within
each step based on their similarity compared to the optimum. This neighbour-
hood cooperation induced by the similarity of Q-values is similar to unsupervised
clustering paradigms such as Neural Gas [12] and it boosts a formation of Q-
value oriented clusters during training. However, unlike approaches such as [13]
it does not use neighbourhood cooperativity induced by the input representation
which would make the model unsuitable for discontinuous value functions. The
adaptation rule of NRL is given by the standard update rule for the actual state
action pair (st, at) and the adaptation of all other state-action pairs based on
their proximity to the actual Q-value

∆Qs,a = η · (Qst,at
− Qs,a) · exp

(

−
|Qst,at

− Qs,a|

2σ2

)

with the learning rate η < α and standard deviation σ. This update formula
enforces the similarity of close Q-values and thus facilitates clustering.

4 Experiments

Since VRL and NRL are able to determine irrelevant parts of the state space with
different degrees of detail, we use two different test scenarios. The basic scenario
is a simple 10 × 10 gridworld which can be seen as a modified version of rooms
gridworld [14] with just one room. The state space consists of a two-dimensional
grid with torus boundary conditions and one goal state. The available actions are
the four one-square-movements within the von Neumann-neighbourhood. One
trial consists of initialising the system with the starting state and then choosing
and performing actions until the goal is reached (success) or until 10,000 steps
have been made without reaching the goal (failure). We perform a total number
of 100 trials where a new starting point is selected randomly every 10 trials. The
reward for reaching the goal state is 10, the reward for any other step is -0.1.

For VRL, we deliberately insert irrelevant dimensions by extending the state-
space from (x, y) to (x, y, z) with (i) z = y, (ii) z = random value (iii) z = y
+ noise ∈ {−1, 0, 1} and (iv) z = y + random walk with steps ∈ {−1, 1} so
that different qualitative causes of irrelevance are tested. As an additional test,
we set the extent of the goal state along the y-dimension to Ny so that there
are two completely irrelevant dimensions. An exemplary graph of the results
of the variance-based approach can be seen in figure 1. The variance of the
irrelevant dimension is always considerably lower than the variance along the
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Fig. 1: Development of variances along the dimensions (x, y,random)

relevant dimensions even after few trials. This behaviour remains the same for
different causes of irrelevance, as reported in Table 1. Even if two of the three
dimensions are completely irrelevant, the algorithm results in a noteably lower
variance for these dimensions. Problems arise only when the variance in the
approximated Q-matrix is not caused by the difference in the real Q-values, but
by random initialisation of the Q-values and too few updates of the quantities.
As a solution to this problem, the Q-values can be weighed according to the
frequency with which they have been visited.

NRL is capable of determining all equivalence classes, not only those along
one of the dimensions. We use a simple gridworld with torus boundary conditions
and one goal as testing scenario. Even in this simple case, there exist 10 equiv-
alence classes characterised by the distance from the goal state ∈ {0, . . . , 10}.
The aim of NRL is to obtain Q-values that facilitate correct clustering of the
state space into equivalence classes. The Q-values for the members of the ten
equivalence classes for standard Q-learning are shown in figure 2 on the left.
The variance of the Q-values belonging to each class is rather high with mean
value 0.1609 after 50 trials and 0.0336 after 100 trials. In addition, the Q-values
of different equivalence classes overlap, making a correct clustering of the state
space into equivalence classes based on the Q-values difficult. Exemplary results
of NRL, i.e. Q-learning with neighbourhood cooperation based on the Q-values
are shown in figure 2 on the right. Here, the variance of the Q-values within the
equivalence classes is lower with mean values 0.1184 after 50 trials and 0.0089
after 100 trials. In addition, the Q-values of different equivalence classes show
no overlap, i.e. clustering of the Q-values into the equivalence classes is possi-

goal size 1 goal size Ny

y=z rand. noise r. walk y=z rand. noise r. walk
ξx(50) 0.7983 0.0264 0.1580 0.0295 0.5791 0.0374 0.0745 0.0315
ξy(50) 0 0.0252 0.0791 0.0255 0 0.0280 0.0115 0.0321
ξz(50) 0 0.0072 0.0214 0.0049 0 0.0020 0.0075 0.0065

ξx(100) 0.6943 0.0680 0.454 0.0766 0.6511 0.0420 0.1880 0.0424
ξy(100) 0 0.0682 0.1978 0.0707 0 0.0353 0.0493 0.0358
ξz(100) 0 0.0161 0.0289 0.0213 0 0.0052 0.0248 0.0078

Table 1: Variances after 50 and 100 trials in different scenarios. Relevant di-
mensions are emphasized.
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Fig. 2: Q-values within the equivalence classes for regular Q-learning and NRL.
Dashed lines represent the borders between the clusters.

ble based on this information. To achieve these results, we applied regular Q-
learning during the first 20 trials in order to have partly adapted Q-values, and
we used NRL during the last 80 trials. σ was initialised with 1 and multiplica-
tively decreased by 0.9 per trial up to 0.1. Naturally, for standard Q-learning,
similar equivalence classes also arise during training due to the convergence prop-
erties of Q-learning; however, a considerably larger number of trials is needed
(around 160 trials), i.e. NRL speeds up convergence.

5 Discussion and future work

In this paper, we proposed two approaches for the potential problem of large
search spaces and slow convergence of Q-learning: variance based relevance de-
termination (VRL) of input dimensions and neighbourhood cooperation (NRL)
of the Q-values. Both methods can be seen as an attempt to transfer the idea of
equivalence classes induced by the reward and system dynamics as proposed by
Ravindran to solely Q-matrix-based equivalence classes. Thus, our methods
can be applied during training with no further knowledge of the reward function
or system dynamics. Since VRL focusses on the relevance of input dimensions,
it can only determine axes parallel equivalence classes but it nevertheless consti-
tutes a robust and effective approach for the proposed test setting. In addition,
it does not increase the necessary amount of training time – it can generalise
from the information gathered by visiting only a part of the state-action space
to determine the least relevant dimensions. NRL is more sophisticated since
it boosts arbitrary cluster formation by means of neighbourhood cooperation.
Note that this soft variant allows cluster formation without a potentially fatal
exact identification of states in early stages of training. In our experiments, NRL
showed much improved convergence speed compared to standard RL, though the
training time for single steps is a bit larger. In contrast to Q-learning where each
state needs to be visited several times, NRL requires only a few visits to compute
feasible Q-values. The NRL-induced reduction of the search space to a few rele-
vant parts could lead to a much faster convergence if combined with additional
strategies. Unfortunately, NRL requires a correct parameter choice, including an
appropriate choice of the neighbourhood factor σ and the exploration rate. Both



NRL and VRL result in a state space that is reduced to the minimal necessary
equivalence classes under the restrictions put on the respective algorithm.

These first results are very promising, however, there remain a number of
issues for further research: both algorithms are sensitive to the scaling of the
search space and the reward function and scale invariant alternatives might be
more robust. One simple possibility which we currently test is the substitution of
the Q-values by their rank. So far, we restricted our experiments to determining
the irrelevant dimensions without removing states from the system. This will
be done in a second set of experiments. In this context, the question of suit-
able stopping criteria arises since the underlying model and optimum number of
equivalence classes are not known. One possibility is a comparison of the mea-
sures to the value obtained for definite noise as a default-barrier for reduction.
Additionally, there are some apparent variation possibilities for VRL and NRL
which remain to be tested such as the entropy as an alternative to the variance
measure. Last but not least both VRL and NRL remain to be applied to more
complex scenarios within real-life applications.
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