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Abstract. In the semiconductor industry the number of circuits per
chip is still drastically increasing. This fact and strong competition lead
to the particular importance of quality control and quality assurance. As
a result a vast amount of data is recorded during the fabrication process,
which is very complex in structure and massively affected by noise. The
evaluation of this data is a vital task to support engineers in the analysis
of process problems. The current work tackles this problem by identifying
the features responsible for success or failure in the manufacturing process
(feature selection).

1 Introduction

As part of the project Overall Equipment Efficiency (OEE)1, the work package
Online Tool Controlling (OTC)2 deals with identifying problems in the chip-
production pipeline. Feature selection can guide the engineer and help solve
the problem by giving hints as to which features could be responsible when the
number of defective chips reaches a specified level.

High data dimensionality, unbalanced classes (low yield values are seldom),
and noise complicate the problem. Also, there is no guarantee that the Process
Control Monitoring (PCM) data contains all problem relevant information.

However, PCM data seems predestined for feature selection as the electrical
measurements contain many linearly dependent features. We do not consider
feature extraction methods such as PCA here. Extraction methods are not so
useful for engineers due to a loss of semantics of the features.

We therefore concentrate on feature selection (an overview is given in [1],
previous work comparing feature selection algorithms can be found in [2, 3]).
We study the following goals in the context of industrial production processes:

1. The selection of a very small set of important features may give the engineer
insight into a particular production problem.

2. Using only relevant features may lead to a more robust classifier for yield
prediction.

1Funded by the BMBF, in cooperation with Atmel Germany GmbH, camLine GmbH, Elmos
Semiconductor AG, Fraunhofer, Philips SC GmbH, Robert Bosch GmbH, TIP GmbH, X-FAB
Semiconductor Foundries AG, ZMD

2Funded by the BMBF and supported by the project partners Robert Bosch GmbH and
Elmos Semiconductor AG



To attain these goals, a large part of our work will deal with the comparison
of wrapper methods and criterion functions for feature selection on PCM data.

The paper is organized as follows. The following section describes the PCM
data. In Section 3 we describe the methods used. Results are presented in
Section 4 and discussed in Section 5.

2 Data

The datasets contain measurements such as electrical currents, resistances and
layer thicknesses. The dataset pcm1 contains measurements from multiple wafer
sites, whereas the mean of multiple wafer site measurements was used for pcm2.
By choosing a suitable threshold for the wafer yield, a class label for a two-class
problem (signifying “high yield” and “low yield”) was determined. Both datasets
contain some highly correlated features.

Each dataset was kept in chronological order and split into a training set
and a test set, in the ratio 3:1 (number of samples). This leads to an uneven
distribution of the classes (see Table 1), and complicates the prediction because
PCM data is non-stationary. However, chronological ordering leads to more
realistic results. Feature selection was performed on the training set. The test
set (unseen by the feature selection) was used to test the performance of the
feature selection. The need to use an independent test set is shown in [4].

Name Samples Samples in class 1 Features
pcm1 train 3000 57% 61
pcm1 test 1000 31% 61
pcm2 train 1000 48% 85
pcm2 test 313 57% 85

Table 1: Datasets used in the experiments.

3 Experiments

We tested the Sequential Forward Selection (SFS) and Sequential Forward Float-
ing Selection (SFFS) using different criterion functions as a measure for feature
subset relevance. The SFS is presented in [5] and consists of successively build-
ing up a feature subset by adding one feature at a time. A criterion function
evaluates feature subsets and chooses the best feature to add at each step. A
drawback of SFS is the “nesting effect”: once a feature has been added to the
subset, it cannot be removed at a later stage.

The SFFS is described in [6, 7] and allows backtracking as long as this in-
creases the criterion function. The SFFS is said to produce results close to the
branch and bound method [8]. The SFFS needs far less computational effort
than branch and bound (which is optimal given a monotonic criterion function)
and the SFFS does not require a monotonic criterion function.



The criterion functions we compared were a k-NN classifier based on the
Euclidean distance (with k=5), the mean of the Mahalanobis distances between
each sample of one class and the distribution of the second class (M-dist), and
a Fuzzy-ARTMAP (FAM) classifier [9].

To test feature selection results, a FAM classifier was used. FAM was found
to be a suitable classifier for wafer PCM data [10], requiring little user interaction
(the vigilance parameter, which controls the number of neurons of the network,
can be fine-tuned). We used FAM as a criterion function in “fast learning” mode
and with vigilance set to 0.8. Each FAM training cycle consisted of 15 repetitions
with randomly ordered training samples to reduce dependency on the order of
the input samples.

The selected feature subsets were validated with FAM to compare the per-
formance of the k-NN, M-dist and FAM criterion functions. By intuition, FAM
should be the most suitable criterion, but we were interested in the potential
speedup by using a simpler criterion. The validation graphs (Fig. 2) show the
relevance of features for the particular production problem under scrutiny. These
are of interest for our first goal (see Section 1).

Finally, we forecast yield values for the test data. For validation and testing,
FAM vigilance was set to 0.9 and kept constant to avoid fitting this parameter to
the test data. The test results (Fig. 3) show how well the selected feature subsets
generalize to new data, which is important for yield prediction, our second goal.
They reflect the combined performance of the feature selection algorithm and
FAM classifier. The test was repeated 15 times, as for the validation.

There is an important point to note concerning error estimation. A simple
10-fold cross-validation (CV) of PCM data is bound to underestimate the error:
While wafer-to-wafer variation within a lot is normally small, lot-to-lot variation
can be high. As soon as some samples from a particular lot are included in the
training set, forecasting samples from the same lot in the validation set is easier.

Thus, we use a sliding window validation (SWV) method to validate the
chosen feature subsets for the k-NN and FAM criterions: Samples are kept in
chronological order and a contiguous subset (window) of samples is viewed at a
time. Training samples are taken from the front of the window and validation
samples from the rear. The window slides through the data in a predefined
number of steps. This way we achieve a more realistic validation result.

4 Results

Result graphs are structured as follows: thin lines are SFS results, thick lines are
SFFS. Lines are dotted for k-NN, dashed for M-dist, and solid for FAM. SWV
results show the appropriateness of the selected features for the closed-world
problem (i.e. features relevant for a particular production problem). Test set
results show the appropriateness of the selected features for predicting future
yield values.

The criterion curves (Fig. 1) peak between 10 and 20 features and imply
that not much is to be gained by increasing the subset size further. This shows



that our first goal, namely that of finding a small set of relevant features for the
training set, can be reached for both datasets.
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Fig. 1: Left: pcm1 training set. Right: pcm2 training set. Comparison of two
criterion functions for SFS and SFFS.

Figure 2 displays the SWV results which are similar to the criterion curves.
As expected, the FAM criterion outperformed the other methods. It is evident
that the choice of criterion function is much more important than deciding on
SFS or SFFS, at least when determining features for the closed-world problem.

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of features

S
lid

in
g

w
in

d
o
w

v
a
lid

a
ti
o
n

a
c
c
u
ra

c
y

SFS (5-NN criterion)
SFFS (5-NN criterion)
SFS (M-dist criterion)
SFFS (M-dist criterion)
SFS (FAM criterion)
SFFS (FAM criterion)

0 10 20 30 40 50 60 70 80
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of features

S
lid

in
g

w
in

d
o
w

v
a
lid

a
ti
o
n

a
c
c
u
ra

c
y

SFS (5-NN criterion)
SFFS (5-NN criterion)
SFS (M-dist criterion)
SFFS (M-dist criterion)
SFS (FAM criterion)
SFFS (FAM criterion)

Fig. 2: Left: pcm1 training set. Right: pcm2 training set. FAM estimated
classification accuracy (SWV) for feature sets determined by SFS and SFFS.

Figure 3 shows the test results. These reveal that using less than 10 features
leads to the best prediction accuracy. This confirms the usefulness of feature se-
lection for reaching our second goal. For pcm1 data, the same result was obtained
by repeating the test on a second pcm1 test set. This underlines the robustness
of the selected feature subsets. All methods show similar performance. The
fastest method (M-dist SFS) can therefore be used for this type of data.

The pcm2 test shows a slight superiority of FAM over the other methods. The



difference between SFS and SFFS is negligible considering the high variation in
the results. This once again shows that the criterion curve, which displays better
values for SFFS, can be misleading. Although higher accuracies are reached than
for pcm1, finding the correct number of features for prediction is hard.
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Fig. 3: Left: pcm1 test set. Right: pcm2 test set. FAM prediction accuracy for
feature subsets determined by SFS and SFFS.

5 Discussion

Even though the SFFS achieved marginally better criterion results than the
SFS, this improvement is not visible in the test results. Given the much shorter
running time (by a factor of 3–5 in our experiments), sequential feature selection
on PCM data should preferably be done by SFS.

The SWV results undermine the intuition that the classifier and criterion
function should be the same in closed-world problems (FAM in our case). For
yield prediction however, test results for both data sets show no preference for
any of the three criterion functions in the interesting range of 5–30 features.
Above 40 features, FAM and M-dist feature subsets clearly outperform k-NN on
the pcm2 data, which could be attributed to the fact that no outlier removal was
done on pcm2 data.

An empirical evaluation of feature subsets was undertaken by engineers to
confirm the presence of problem relevant features among the first 5 features se-
lected. In the first case, the subset attained with the M-dist criterion was found
to contain the most relevant features for the closed-world production problem un-
der inspection. In the second case, all three subsets were found to contain impor-
tant features at the first position. The subset attained with the k-NN criterion
was viewed as the most appropriate. We conclude that to reach goal 1 (obtain
problem insight by selecting a small number of features), no single method was
found to be the best. However, the SWV graphs assert that very small feature
subsets can already contain most of the information describing the problem.

Note that we did not optimize the test results. To ensure a fair comparison



of feature selection techniques, we abstained from adjusting the vigilance and
sliding window parameters. Results could be boosted even further by omitting
samples in the medium yield range or by introducing the “voting strategy” for
FAM presented in [9]. For automated yield prediction in a wafer production
environment, cross-validated feature selection should be used [4], taking the
highest point on the averaged FAM criterion curve as the number of features to
train. In addition, retraining of the FAM classifier should be repeated regularly
to shorten the time span between training and yield prediction.

To summarize, we have proposed a procedure whereby an engineer looking
for a feature subset describing a particular problem should select a very small
feature subset by SFS. We confirmed that a few relevant features model the
problem very well, although the choice of the best criterion function was found
to be data dependent.

pcm1 test results suggest that yield prediction can be done well, with an
optimal number of 5–15 features in our case. The trend in the pcm2 graph is not
as clear. Thus, we plan to analyze more datasets to confirm our positive yield
prediction result.
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