
Adaptive robot learning in a
non-stationary environment

Kary Främling

Helsinki University of Technology, Department of Computer Science, FI-02015 HUT, Finland
Kary.Framling@hut.fi

Abstract. Adaptive control is challenging in real-world applications such as
robotics. Learning has to be rapid enough to be performed in real time and to avoid
damage to the robot. Models using linear function approximation are interesting in
such tasks because they offer rapid learning and have small memory and
processing requirements. This makes them suitable as adaptive controllers in non-
stationary environments, especially when the controller needs to be an embedded
system. Experiments with a light-seeking robot illustrate how the robot adapts to
the environment by Reinforcement Learning where the robot collects training
samples by exploring the environment.

1 Introduction

The use of machine learning in real-world control applications is challenging. Real-
world tasks, such as those using real robots, involve noise coming from sensors, non-
deterministic actions and uncontrollable changes in the environment. In robotics,
learning must be relatively rapid and possible to perform without causing damage to
the robot. Only information that is available from robot sensors can be used for
learning. This means that the learning methods have to be able to handle partially
missing information and sensor noise, which may be difficult to take into account in
simulated environments.
 Artificial neural networks (ANN) are a well-known technique for machine
learning in noisy environments. In real robotics applications, however, ANN learning
may become too slow to be practical. One-layer linear function approximation ANNs
(often called Adalines [7]) offer faster training than non-linear ANNs and their
convergence to an optimal solution can usually be guaranteed. These are properties
that are particularly useful in non-stationary environments that require rapid
adaptation, especially if the robot has to explore the environment and collect training
samples by itself. Learning by autonomous exploration of the environment is often
performed using reinforcement learning (RL) methods. Finally, the limited memory-
and computing power needs of Adalines make them easy to use in embedded systems.
 The structure of this paper is as follows. Section 2 gives background
information about gradient descent learning and RL, followed by experimental results
in Section 3. Related work is studied in Section 4, followed by conclusions.

2 Gradient descent reinforcement learning

In gradient descent learning, the free parameters of a model are gradually modified so
that the difference between the output given by a model and the corresponding

“correct” or target value becomes as small as possible for all training samples
available. In such supervised learning, each training sample consists of input values
and the corresponding target values. Real-world training samples typically involve
noise, which means that it is not possible to obtain a model that would give the exact
target value for all training samples. The goal of learning is rather to minimize a
statistical error measure, e.g. the Root Mean Square Error (RMSE)

 ()∑
=

−=
M

k

k
j

k
j at

M
RMSE

1

21
 (1)

where M is the number of training examples, tk
j is the target value for output j and

training sample k and ak
j is the model output for output j and training sample k. In RL

tasks, each output aj typically corresponds to one possible action.
 RL differs from supervised learning in several ways. The agent has to collect the
training samples by exploring the environment, which forces it to keep a balance
between exploring the environment for new training samples and exploiting what it
has learned from the existing ones. In supervised learning, all training samples are
usually pre-collected into a training set, so learning can be performed off-line. In RL,
target values are only available for used actions whereas in supervised learning target
values are typically provided for all outputs (actions). Finally, in RL the target value
may not be available directly; it may be available only after the agent has performed
several actions. Then we speak about a delayed reward learning task.
 RL methods usually model the environment as a Markov Decision Process
(MDP), where every state of the environment needs to be uniquely identifiable. This
is why the model used for RL learning is often a “lookup-table”, where each
environment state corresponds to one row (or column) in the table and the columns
(or rows) correspond to possible actions. The values of the table express how “good”
each action is in the given state, usually called the action-value. Lookup-tables are not
suitable for tasks involving sensorial noise or other reasons for the agent not being
able to uniquely identify the current state of the environment. Therefore state
generalization techniques, e.g. ANNs, are often used instead of lookup-tables.
Generalization assumes that an action that is good in some state is probably good also
in “similar” states. ANNs can handle any state descriptions (not only discrete ones) so
they are well adapted for problems involving continuous-valued state variables and
noise, which is usually the case in robotics applications.
 The simplest ANN is the linear Adaline [7], where neurons calculate their
output value as a weighted sum of their input values

 (2) ∑
=

=
N

i
jiij wssa

1
,)(

where wi,j is the weight of neuron j associated with the neuron’s input i, aj(s) is the
output value of neuron j, si is the value of input i and N is the number of inputs. They
are trained using the Widrow-Hoff training rule [7]
 (3) ijjji

new
ji satww)(,, −+= α

where α is a learning rate. It can easily be shown that there is only one optimal
solution for the error as a function of the Adaline weights, so gradient descent is
guaranteed to converge if the learning rate is selected sufficiently small. In this paper,

the well-known normalized least mean square (NLMS) method is used, where α in
(3) is replaced by αnorm:

 ∑
=

=
N

i
inorm s

1

2αα (4)

, which guarantees that the output value aj is adjusted towards the target value tj with
the same ratio independently of the input values sj, which simplifies determining a
suitable learning rate and avoids differences in learning speed for input values of
different magnitude as shown in [2].
 In RL tasks, convergence of gradient descent cannot always be guaranteed. If
the action selection policy π does not make the agent collect representative training
samples, then learning may fail to converge to a good solution. Therefore, the action
selection policy must provide sufficient exploration of the environment to ensure that
“good” training samples are collected. At the same time, the goal of training is to
improve the performance of the agent, i.e. the action selection policy. A commonly
used method for balancing exploration and exploitation is to use ε-greedy exploration,
where the greedy action is selected with probability (1-ε) and an arbitrary action is
selected with probability ε using a uniform probability distribution. Another
commonly used exploration method is Softmax that selects actions according to
Boltzmann-distributed probabilities, where the randomness of action selection is
adjusted by the so-called temperature parameter [7].

3 Experimental results

Fig. 1. Lego Mindstorms robot. Light sensor is at the top in the front, directed

forwards (right in picture). Touch sensors are installed in the front and the rear.

Experiments were performed using a robot built with the Lego Mindstorms Robotics
Invention System (RIS) programmed with the Java programming language. The robot
has one motor on each side; touch sensors in the front and in the back and a light
sensor directed straight forward mounted in the front (Fig. 1). Robots usually have
more than one light sensor, which were simulated by turning the robot around and
getting light readings from three different directions. One light reading was from the
direction straight forward and the two others about 15 degrees left/right, obtained by

letting one motor go forward and the other motor backward for 250 milliseconds and
then inversing the operation.

50

52

54

56

58

60

62

64

66

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

sample index

lig
ht

 s
en

so
r

va
lu

e

0

5

10

15

20

25

30

35

52 53 54 55 56 57 58 59 60 61 62 63 64 65

light sensor value

nu
m

be
r o

f s
am

pl
es

Fig. 2. 150 light samples for given light conditions, taken with 500 millisecond

intervals. Average value is 60.0. Left: raw values; right: value distribution.

 Performing the following motor commands for 450 milliseconds gives five
possible actions: 1) both forward (advances about 5 cm), 2/3) one forward, other
stopped (goes forward about 2 cm and turns about 15 degrees), 4/5) one forward,
other backward (turns about 40 degrees). The robot starts directed straight towards the
lamp at a distance of about 110 centimeters. A light value of 80 out of 100 signifies
that the goal is reached, i.e. one to fifteen centimeters from the lamp depending on
direction and sensor noise. Noise comes both from the environment (floor reflections,
different colors etc.) and the robot itself (imprecise motor movements, battery charge
etc.). The light sensor is the biggest source of noise as shown in Fig. 2.
 There is one ANN output per action, where each output value corresponds to an
action-value estimate aj(s) in equation (2). With five actions and three state variables,
a 5x3 weight matrix is sufficient (no bias input used). The NLMS method is used with
α = 0.5 and ε-greedy exploration with ε = 0.2. The target value tj in equation (3)
comes from the light sensor reading in the forward direction after performing an
action. Therefore the ANN learns to predict the new light value after taking an action,
so the action with the highest aj(s)-value is the one that should allow the robot to
approach the light source the most. ANN weights are initialized with random values
in the range [0, 1), which tends to give higher action-value estimates than the true
ones. This technique is called optimistic initial values and favors exploring unused
actions.
 Multiplying the value of the left light sensor by 0.1 simulates a faulty sensor,
which illustrates how an adaptive system can be used for calibrating the controller.
Two cases were tested: 1) having a defective sensor from the beginning of training
and 2) sensor becoming faulty after three episodes. Fig. 3 shows that the smaller
values of the faulty sensor compared to the others tend to slow down gradient descent
but it still converges to a good policy that continues improving after the tenth episode.
When learning is started without faulty sensors and introducing the faulty sensor in
the 4th episode, the agent adapts rapidly after some right-bound circuits or collisions.
Starting with non-faulty sensors apparently makes final learning quicker compared to
having a faulty sensor from the start. The up going “wave” observed in the graphs
around the fourth and fifth episodes is due to exploration of new actions, which
destabilizes already identified (but usually sub-optimal) solutions.

average number of steps for 10 runs

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10
episode

st
ep

s t
o

go
al

No fault

0.1xleft sensor

Sensor fault on 4th

Fig. 3. Results for 1) no sensor fault 2) sensor fault from beginning 3) sensor fault

starting from fourth episode.

Fig. 4 shows the number of manual resets that occur when the robot drives against a
wall or passes behind the lamp. The closest wall was only about 40 centimeters away
from the straight line from start to goal, so collisions sometimes occur due to ε-greedy
action selection even with a perfect controller. The number of collisions is great for
the third agent on the fourth episode when the sensor signal has changed, but such
collisions are avoided already on the next episode.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10
episode

nb
r o

f m
an

ua
l r

es
et

s

No fault
0.1xleft sensor
Sensor fault on 4th ep.

Fig. 4. Number of manual resets per episode.

4 Related work

Due to the challenges in real-world robotics applications, most experimental RL work
has been done in simulated environments. RL has still been used with real robots by
some researchers. Tasks include wall following, going through a door, docking into a
charger [3], box finding, box pushing, unwedging from stalled states [4] and selecting
the appropriate pre-programmed behaviour to use [5]. Millán [6] and Dorigo and
Colombetti [1] have tested similar tasks as the one used here, but using much more
complex learning methods than those described here. Both sonar and light sensors
have been used, but state variables are usually converted into binary values. The

number of actions varies from five to sixteen. What is common to these approaches is
that they tend to use complex function approximators. They also require a lot of pre-
existing knowledge to be able to learn successfully. As in the experiments performed
in this paper, they also all use immediate reward to guide learning efficiently. The
work presented in this paper differs from these approaches in several ways: 1) Pre-
existing knowledge: the only assumption used here is that a linear function
approximator is sufficient; 2) learning is adaptive to changes in the environment (e.g.
moving the goal) or in the agent itself (e.g. faulty sensors) and 3) simplicity that
makes learning robust and rapid.

5 Conclusions

As shown by the results of this paper, the elementary behavior of moving towards a
light source can be learned using a simple linear model. It is also shown that such a
learning system can rapidly adapt to situations occurring in real-world non-stationary
environments, where sensor calibration and noise are issues to take into account. The
simplicity of the learning system makes it interesting compared to related work, taken
that moving towards a light source is a task performed successfully even by simple
organisms in nature.
 Using an Adaline avoids discretization of the state variables, which is usually
done in RL applications. Discretization tends to make hidden state problems worse
unless using a very fine discretization, but then the size of the state space grows
exponentially, necessitating the use of discounted reward and more exploration.
Future work will consider delayed reward tasks, which may also necessitate using
non-linear ANNs.

References
[1] M. Dorigo and M. Colombetti, Robot shaping: an experiment in behavior engineering, A Bradford

book, USA, 1998.

[2] K. Främling, Scaled gradient descent learning rate - Reinforcement learning with light-seeking
robot. In proceedings of ICINCO'2004 conf., pages 3-11, 25-28 August 2004, Setubal (Spain), 2004.

[3] L.-J. Lin, Programming robots using reinforcement learning and teaching. In proceedings of the
Ninth National Conference on Artificial Intelligence (AAAI), pages 781-786, 1991.

[4] S. Mahadevan and J. Connell, Automatic Programming of Behavior-based Robots using
Reinforcement Learning, Artificial Intelligence, 55(2-3):311-365, 1992.

[5] M.J. Mataric, Reward Functions for Accelerated Learning. In Cohen, W. W., Hirsch, H., editors,
Machine Learning: Proceedings of the 11th International Conference, Morgan-Kaufmann, 1994.

[6] J.R. Millán, Rapid, Safe, and Incremental Learning of Navigation Strategies. IEEE Trans. Systems,
Man, and Cybernetics - Part B, 26(3):408-420, 1996.

[7] S.B. Thrun, The role of exploration in learning control. In DA White & DA Sofge, editors,
Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. New York, NY: Van
Nostrand Reinhold, 1992.

[8] B. Widrow and M.E. Hoff, Adaptive switching circuits. In 1960 WESCON Convention record Part
IV, Institute of Radio Engineers, New York, pages 96-104, 1960.

