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Abstract. We study the phenomenon of phase transition occurring in sparse 
associative neural networks, which is characterized by the abrupt emergence of 
associative properties with the growth of network connectivity. It is shown that this 
discontinuous behaviour is caused by the specific way of architecture selection. 
Based on empirical results the relationship among critical parameters is suggested. 

1 Introduction 

Sparse (or diluted) associative neural networks attract a lot of attention for a number 
or reasons: they are more suitable for hardware implementation than their fully-
connected counterparts; they require less memory and are faster to operate during 
computer simulations; lastly, their architecture looks more feasible from a biological 
point of view.  
 Though much research has been done in this field, the phenomenon of phase 
transition that occurs during change of architecture was discovered only recently. 
 In [1], the authors consider a McCulloch-Pitts model with a random architecture 
characterized by a connectivity parameter. They show that network activity (fraction 
of active neurons when network reaches its steady state) undergoes a discontinuous 
change from zero to a finite value as a critical value of connectivity is reached.  
 The efficiency of the network as an associative memory is studied in [2], [3]. 
The network is based on a small-world architecture and is shown to exhibit a phase 
transition as the network architecture changes from a regular lattice to a random 
graph. 
 Like the authors of [2], [3], we are interested in studying sparse recurrent 
networks as a model of associative memory. But we take a different approach to 
selecting network architecture. For a particular value of the network connectivity, we 
select the architecture that depends on a given set of desirable memory patterns. This 
method of architecture selection combined with the Pseudo Inverse learning rule was 
first suggested in [4] and allows us to improve network performance subject to a 
limited number of connections. A very distinct transition between non-remembering 
and remembering phases of a network occurs as connectivity grows. We will show 
that the architecture selection criterion causes this phenomenon. 
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2 The Associative Model 

2.1 The Network  

We consider a Hopfield-type sparse associative neural network, consisting of n 
neurons. Neuron j affects neuron i if and only if 

iNj∈  
where },...,1{ nNi ⊂  is a subset of unique indices. 
 The network architecture is characterized by the density of connections, or 
connectivity: 
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 There is no direct connection from a neuron to itself: iNi i ∀∉ , . 
 The neuron input, or local field of the i-th neuron, is calculated as a weighted 
sum of net outputs: 
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where W is the (n×n) weight matrix of interneuron connections. 
 During the convergence process the neuron output at the next time step is 
obtained after applying some nonlinear activation function to the neuron input at the 
current time step: 
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 In the given work as an activation function we use the sign function with 
codomain {-1, +1}. Therefore the network stores bipolar vectors with {-1, +1} 
components. 
 Neuron states can be updated synchronously or asynchronously. We use a 
synchronous update mode that favours parallel processing in a hardware 
implementation and offers better associative properties to the network. 

2.2 Associative Properties 

We want the network to store a set of n-ary, bipolar training vectors 
{ } { }npp mp 1,1,...1, +−∈= ξξ  

 The network is said to have associative properties with respect to the training 
set {ξ p} if for some value of r the convergence process starting from any point within 
Hamming distance r from one of the training vectors ξ p always finishes exactly at ξ p. 
 The maximum value of r satisfying this criterion is called the Attraction Radius 
(AR) of the network. 

2.3 Kappa estimation of associative performance 

It is always possible to find AR experimentally. But it can be computationally 
expensive to obtain a reliable value for AR for high dimensional networks. In the 



situation when one is not interested in quantitative estimation of attractor performance 
but rather wants to compare different networks, another approach can be used. 
 The aligned local field for the i-th neuron and bipolar vector ξ is a value of hiξi. 
The bipolar vector is a stable point for the network if and only if all aligned local 
fields are positive. 
 An upward scaling of the weight matrix increases all aligned local fields, but 
obviously does not affect the associative properties of the network. Optimal 
performance can be achieved with the maximization of the aligned local fields with 
respect to the size of weights. It can be done maximizing the normalized stability 
measure [5]: 
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where W i  is the vector of weight coefficients of neuron i (the i-th row of W). 
 The minimum over all neurons and all training patterns gives a measure of 
attractor performance (κ-measure): 
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3 Learning Algorithm 

In [4] we studied the influence of an architecture selection algorithm on the 
associative properties of the network. Given a certain number of inter-neuron 
connections we wanted to find the best way to allocate them among neurons, i.e. we 
wanted to find the network architecture that would enable us to obtain the sparse 
network with the largest values of AR. The best results were obtained with a two-
phase algorithm. The first phase is architecture selection and the second one is 
assigning weights to the connections using the noniterative Pseudo Inverse learning 
rule (PI LR) [6].  
 To select network architecture we use an approach based on the Weight 
Selection algorithm [7]. For a given set of training vectors we construct the projective 
matrix onto this dataset. Then for a given connectivity ρ of the network we select the 
location of ρn2 connections corresponding to the projective matrix elements with the 
largest absolute values. It should be noted that using PI LR instead of reusing the 
subset of projective weights provides the improvement of associative properties [4]. 
 For sufficiently connected networks (ρ ~ m/n) and non-singular training data     
{ξ p} PI LR is guaranteed to match its learning criterion – the equality of all aligned 
local fields to 1. The algorithm works as follows. 
 To allow for structural restrictions imposed by the cellular architecture we 
introduce a selection operator that sparsifies the columns of a matrix: 
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 Operator Si retains only those columns of its matrix argument that correspond to 
indices contained in Ni. 
 Denoting the i-th row of the training data matrix as {ξ p}i, the weights of the i-th 
neuron are calculated as a solution of the following “fixed point” equation: 
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 This solution can be found using matrix pseudo inversion operator: 

( ) { } { }( ) +

⎟
⎠
⎞⎜

⎝
⎛⋅=

TTpiipii SWS ξξ  

4 Numerical Simulations 

4.1 Experimental Setup 

The training set {ξ p} was composed of random data vectors with independent and 
equiprobable components {-1, +1}. The size of the data set is 20 and its dimension is 
200 (n = 200, m = 20) 
 In order to estimate the attraction radius r for each value of connectivity there 
were 100 tests of convergence for training vectors corrupted with a certain level h of 
noise. The value of h corresponding to AR was found using the bisection method. 

4.2 Evolution of associative properties with increasing connectivity 

To verify that the architecture selection algorithm is crucial for the emergence of 
phase transition we measured the evolution of AR with the increase in connectivity 
for four networks. All these networks were trained using PI LR but they use different 
rules for architecture selection. 
– PI WS – The main model described in this paper. It uses the Weight Selection 

algorithm for setting up the architecture. 
– PI Random – The model with random architecture (no diagonal connections, the 

rest of connections are chosen randomly subject to the required connectivity). 
– PI Cell – The model with cellular (regular lattice) architecture. This architecture 

corresponds to 1D cellular network with the following connectivity criterion: 
radiusconnectionjijiNj i ≤−≠⇔∈ &  

– PI WS Reverse – This approach, like PI WS, also uses projective matrix for 
architecture selection. But, so as to consider probably the worst choice of the 
connectivity pattern, it uses location of elements of projective matrix with the 
smallest absolute values. 

 Due to the usage of PI LR all of these networks starting from connectivity ρ ≥ 
0.16 have sufficiently complex architectures to find sets of weights providing all 
aligned local fields being equal to 1. In spite of very much the same behaviour in 
terms of learning, the networks shows considerably different results when it comes to 
their performance as associative memory. This allows us to conclude that the 
difference we see in the associative properties of the networks is determined by the 
way their architectures are selected.  
 As Figure 1a shows, phase transition from non-remembering to remembering 
state is observed only for the PI WS model (at the value of connectivity ρ = 0.16). The 
discontinuous behaviour of κ-measure (Figure 1b) also corresponds to this fact. Only 
the network trained with the PI WS algorithm exhibits a sharp increase in the positive 
codomain (0.15; 0.05) → (0.16; 0.5). 
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Fig. 1: Attraction Radius and κ-measure vs. network connectivity.  

4.3 Dynamics of transition connectivity 

In the previous experiment the value of AR observed at the transition state is rtrans =  
49. This value is fairly close to the AR of fully connected network which is rfull = 58. 
We can evaluate the steepness of transition as a ratio of these two AR values: 

fulltrans rr=η  
 In the next experiment we calculate the values of transition connectivity ρtrans 
and AR for different n and m in a similar experimental to the preceding. For each set 
of values of n and m we averaged ρtrans, rtrans and rfull over three sets of randomly 
generated data. We can see from Figure 2 that the value of transition connectivity 
increases and transition behaviour itself becomes less explicit with decreasing 
network dimension (n) and increasing memory load (m). 
 Two values for (n; m) equal to (100; 100) and (100; 80) are missing as network 
exhibits no associative behaviour at these points (rtrans = rfull = 0).  

 
Fig. 2: Transition connectivity and steepness vs. dimension and memory load. 

4.4 Estimation of transition connectivity 

Normally it requires m weights for each neuron to memorize m patterns; hence we can 
expect the transition connectivity to be a function of normalized memory loading m/n.  
 Experimental values of ρtrans obtained in the previous experiment are shown in 
Figure 3. Within the considered range of parameters the dependence appears to be 
linear with a high degree of correlation. The fact that it takes on average more than m 

a) b)

a) b)



weights per neuron to store the set of m training patterns (angular coefficient α = 1.1 > 
1) is explained by the unequal number of selected weights among neurons. 

y = 1.1102x + 0.0293
R2 = 0.993

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized memory loading (m/n)

Tr
an

si
tio

n 
C

on
ne

ct
iv

ity

 
Fig. 3: Transition connectivity and steepness vs. normalized memory loading. 

5 Conclusions 

Experimental results show the importance of proper network architecture selection for 
the existence of phase transition. As a matter of fact, running the WS algorithm, we 
are performing the selection of variables (neuron weights) of equation (1) using the 
information about the constraints they must satisfy. This approach is more optimal for 
the solvability of (1), providing a lower-norm solution (higher value of κ-measure). 
Once the network has sufficient number of connections for the solution to exist, this 
solution is already good enough to provide high performance as an associative 
memory, thus causing the observed phase transition phenomenon. 
 The discovered behaviour is also important from a practical point of view – for 
a wide range of parameters it allows us to use a sparse network instead of a fully-
connected one without sacrificing performance in associativity. 
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