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Abstract. In medical classification tasks, it is important to gain in-
formation about how decisions are made to ground and reflect therapies
based on this knowledge. Neural black box mechanisms are not suitable
for such tasks, whereas symbolic methods which extract explicit rules are,
though their tolerance with respect to noise is often smaller since they do
not rely on distributed representations. In this article, we test three hy-
brid prototype-based neural models which combine neural representations
with explicit information representation in comparison to classical decision
trees for mental disease classification. Depending on the model, informa-
tion about relevant input attributes and explicit rules can be derived.

1 Introduction

An important problem in psychotherapy is to identify border-line patients which
are heavily disturbed since a specific treatment and therapy management is nec-
essary for these patients [2]. This classification has to take place before the
treatment. Commonly, therapists make their decision depending on the clinical
impression of the patients within an initial session. As an alternative which does
not require human intervention, the self-report questionnaire Borderline Person-
ality Inventory (BPI) has been developed which allows automatic classification
of border-line patients [3]. The questionnaire is answered by the patients and
a resulting cut-off-value indicates a borderline typed disturbance. The classi-
fication of human experts and the results of the questionnaire, however, differ
significantly in the given database, indicating that decisions are based on dif-
ferent factors or a different weighting scheme of the factors. Now the question
occurs which factors are considered relevant for the respective decision such that
an explicit model can be built which can be the starting point for a reliable,
optimized, and automatic classification.

The results of three different additional questionnaires are available for each
patient which describe potential factors for psychological disturbances, i.e., which
reflects different topics of the overall personality and personality relations of
the patients. The first one is the Giessen-Test-Questionnaire (GT) which is
for self-assessment of patients with respect to their emotional feeling, basic self-
understanding of personality and social competence, whereby the aspects of self-



perception and self-ideal discrepancies can be detected [1]. The second question-
naire is the Freiburg Personality Inventory (FPI) reflecting a set of personality
properties including social orientation, inhibition, contentment, aggressiveness,
stress, somatic complaints, openess, sensitivity and emotionality/neuroticism
[9]. The set of questionnaires is completed by the Invetory for Assesment of
Interpersonal Relations (IIP) which judges the interpersonal relations.

Based on these data, the question for machine learning is to identify the
relevant attributes and a possible hypothesis how experts and BPI, respectively,
make their decision. We tackle this problem learning classifiers from the given
data, which allow insight into their classification and which provide a hypothesis
for the respective decision rule.

2 GRLVQ, decision trees, and rule extraction

Generalized relevance learning vector quantization (GRLVQ) has been developed
by the authors [6] as an improvement of LVQ as introduced by Kohonen [8]. On
the one hand, GRLVQ obeys a global cost function also for a continuous data
distribution which assures convergence of the algorithm and, in addition, an
optimization of the margin during training, i.e. good generalization ability [5].
On the other hand, it substitutes the euclidean metric by a weighted metric
with relevance terms which are automatically adapted during training. Apart
from an improved accuracy and flexibility, this weighting scheme allows insight
into the behavior of the classifier since the learned relevance profile of the input
dimensions directly indicates based on which features decisions are taken.

Formally, a GRLVQ network is characterized by a number of prototypes
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The learning algorithm adapts both, prototypes �w
i and relevance terms λi by

minimizing the cost function
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for a given training set (�xi, yi) ∈ R
n × {1, . . . , C}, i = 1, . . . , p, by a stochas-

tic gradient descent, where d+(�xi) is the squared weighted euclidean distance
to the closest correct prototype and d

−(�xi) is the squared weighted euclidean
distance to the closest wrong prototype. It has been shown in [5] that the gener-
alization ability of GRLVQ-networks can be expressed in terms of the quantity
mini |d

+(�xi)− d
−(�xi)|, the hypothesis margin.

Induction of decision trees constitutes a standard symbolic machine learning
tool for classification of data [10]. A decision tree consists of a tree which inte-
rior nodes are labeled by a dimension number and the connections to the node’s
children are labeled by real values which split the dimension into intervals. The



leaves contain class labels. Given a data point �x, a decision is based on con-
secutive decisions provided by the interior nodes until the class information is
reached at the leaves. For a given training set, a decision tree can recursively be
induced by the choice of an interior node and an induced split of the training set
until a widely uniform classification is possible at the leaves. Thereby, an appro-
priate measure such as the entropy guides the choice of the splitting dimension.
In this paper, we use the algorithm J48 provided within the open source Weka
data mining software [11]. Unlike GRLVQ, decision tree learners consider one
attribute at a time, such that relevance distributed among several attributes
cannot be detected. However, they provide explicit rules and an ordering of the
dimensions with respect to their importance for the decision tree by means of
their depth within the tree.

GRLVQ comes together with a relevance profile, i.e. a weighting scheme for
the dimensions such that the extraction of a decision tree which approximates
a trained GRLVQ network is easily possible with only little extra cost, without
the need of further training or induction. The following recursive method, the
BB-tree algorithm, has been introduced and tested by the authors in [4]: we
start with the dimension with highest relevance factor as the root of the decision
tree and split between consecutive prototypes (whereby we ignore prototypes
which distance in the considered dimension is smaller than average) until the
remaining set of data points assigned to this strand can almost uniquely be
classified by one class or further separation has no effect. Depending on the
respective setting, the complexity of the resulting tree can be controlled and
extraction of further interior nodes be stopped, assigning the majority class
to the resulting leaf. In this BB-tree algorithm, the order of the dimensions
within the tree is given by the order of the relevance factors determined by
GRLVQ. Thus the BB-tree algorithm is built on the ability of GRLVQ to judge
groups of dimensions at a time, i.e. relevant input groups will be highlighted
and the involved dimensions be used for splitting. Induction of decision trees,
on the contrary, does only consider one dimension at a time independent of their
connection to other splitting possibilities, since the information gain of each
dimension is computed separately. However, since the order of the dimensions
within BB-trees is priorly fixed, a different weighting scheme for subsets of points
cannot be achieved. In addition, the number of prototypes and thus the potential
complexity of the resulting tree is determined a priori.

In this article, we introduce a further fully hybrid method based on the BB-
tree algorithm. The method iterates GRLVQ training for a minimum number
of prototypes (only one per class, thus a very fast version of GRLVQ), followed
by the induction of a new node and the corresponding splitting of the data set
as in the BB-tree algorithm. Thus, GRLVQ is started with one prototype per
class for a fixed number of steps. The most relevant dimension serves as split-
ting dimension, whereby the splits are located between the prototypes ignoring
prototypes which are closer than average in the respective dimension. For the
resulting data split, GRLVQ is restarted from initial positions independently for
each part of the data set until a decision is reached. Since the method iteratively
splits and trains afresh, it is more costly than a direct tree extraction from a
fully trained GRLVQ network. However, this method allows more flexible trees
since local weighting factors evolve for each data split, thus the split-dimensions



BPI-CUT BPI-CUT DIAG DIAG
(test) (full) (test) (full)

GRLVQ(1) 72 76 71 72
GRLVQ(2) 71 77 70 73
BB(1) 67 74 68 69
BB(2) 64 74 67 68
HYBRID 64 77 67 71
J48 67 97 60 98

Table 1: Mean training accuracy (in %) for different algorithms and settings,
The mean error on the test set and the training error on the whole data set are
reported

are independent for each interior node, whereas they are identical for all interior
nodes of the same depth within the BB-tree algorithm. In addition, the initial
complexity of GRLVQ need not fit the complexity of the final classifier for this
hybrid version, since the initial setting just serves as a starting point for an au-
tomatic modularization of the problem. The overall complexity of the classifier
evolves automatically and can be controlled during training.

3 Experiments

Data from 334 patients are available who are characterized by 28 attributes de-
scribing their personality and personal relations collected within self-assessment
using the three different questionnaires GT, FPI and IIP. As mentioned above,
the questionnaires focus on different aspects of personality and personal rela-
tions, whereby attributes 0 to 7 stem from the GT, attributes 8 to 19 come from
the FPI, and the attricutes 20 to 27 come from IIP. These inputs are classified
according to the BPI classification (data set BPI-CUT) which indicates 38%
as border-line patients, and they are classified according to diagnosis made by
therapist (data set DIAG) who set 32% as border-line patients.

These two data sets are tackled as classification tasks for machine learning
whereby specific emphasize is laid on the respective attributes indicated as rele-
vant. Data has been normalized before training by a z-transformation. Training
is done on five different random splits of the data sets into training and test set,
each comprising 50%, and, in addition, once on the data set as a whole (without
test set). The training algorithms include:

• J48: decision trees (J48 with default parameters as set in WEKA), the
resulting depth of the trees varies about 10, resulting into 70-100 nodes,

• GRLVQ(1), GRLVQ(2): GRLVQ with one and with two prototypes per
class, respectively, whereby the parameters have been roughly optimized
over all runs (initialization in the centre points of the classes, learning rate
0.05, learning rate for the relevance terms 0.005, about 1000 updates),

• BB(1), BB(2): decision trees extracted from GRLVQ(1) and GRLVQ(2)
with maximum depth given by the number of significant relevance terms



BPI-CUT BPI-CUT DIAG DIAG
(test) (full) (test) (full)

GRLVQ(1) 19>15>11 17>19>15>11 1 2>0
GRLVQ(2) 19>17>15>11 17>15>11 23>1>0>18 2>7>0
HYBRID 19 — (5,17) 17 — (7,11,15,19) (0,1,2) — (1,2,10,14) 2 — (16,17)
J48 15 — (12,17) — (1,2,8) 15 — (2,12) — (18,24)

Table 2: Dimensions ranked as important by the algorithms. For GRLVQ,
dimensions with average weighting > 0.1 are reported in the order of their rel-
evance; thereby, some dimensions change for the runs because the information
can be substituted by others. For BB, the dimensions ranked as important
are the same, since training is identical. For HYBRID, the dimensions in the
first two layers of the extracted decision trees are reported; these are different
for HYBRID in different runs and all found dimensions are accumulated in the
presentation. For J48, the dimensions indicated as important are the same for
subsets and the full set and they are reported for the first three layers.

(usually 3),

• HYBRID: a hybrid GRLVQ-BB algorithm as described earlier with roughly
optimized parameters (learning rate 0.05 for prototypes and relevance
terms, 400 steps for each training, resetting of training after each split,
maximum depth 3).

The achieved classification results are reported in table 1. It is obvious, that
the classification task is difficult, since it is affected by severe noise. From visual
inspection of the data, it can be seen that the correlation of a single dimension
of the data with the classification is low. Correspondingly, the neural method
GRLVQ which takes more than one dimension into account at a time shows
better performance than decision trees (4% resp. 10% improvement on the test
set compared to J48). Turning from GRLVG to decision trees gives competitive
results in case of BPI-CUT and superior results in case of DIAG with respect
to J48. J48 shows superior results on the full training set due to the fact that
the complexity of the trees was not restricted for J48, whereas it is for the other
methods. Increasing the latter complexity would also allow a classification close
to 100% on the training set, but without generalization to the test set.

The algorithms emphasize dimensions by weighting (GRLVQ, BB) or split
according to the dimensions at the top of the decision tree (J48, HYBRID).
The respective dimensions are reported in table 2. Naturally, the ranking of
the algorithms is different since their result is nondeterministic and information
is spread among the attributes. Nevertheless clear tendencies can be observed
for all runs: the decision for BPI-CUT is mainly influenced by dimensions 11,
15, 17, and 19, all quantities are contained in the second questionnaire FPI.
On the contrary, the decisions of therapists collected in DIAG also depend on
dimensions 0, 1, and 2, all attributes of the first questionnaire GT. The third
questionnaire starting from dimension 20 only plays minor a role.



4 Discussion

Obiously, the decision for borderline typed disturbance is made on different dio-
gnostic views. The BPI-based decision indicates scales obtained from FPI which
are in particular the items inhibition (11), somatic complaints (15), openess (17)
and emotionality/neuroticism (19). In contrast, the decisions made by the ther-
apist reflect the items provided by the GT outlining the items social resonance
(0), dominance/pliancy (1) and control as opposite to compulsion (2). So there is
some evidence that the clinical view by therapist is dominated by active aspects
of personality whereas the BPI-cut-decision emphasizes more passive aspects
representing the emotial and somatic feeling of patients.

From a technical point of view, GRLVQ, the hybrid variant GRLVQ-BB
and J48-decision trees obtain competitive results as discussed above. Yet, one
advantage of the GRLVQ-based approaches could be seen in the availability of
the more flexible description by characteristic prototypes.
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