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Abstract. Winner-Takes-All (WTA) algorithms offer intuitive and pow-
erful learning schemes such as Learning Vector Quantization (LVQ) and
variations thereof, most of which are heuristically motivated. In this ar-
ticle we investigate in an exact mathematical way the dynamics of differ-
ent vector quantization (VQ) schemes including standard LVQ in simple,
though relevant settings. We consider the training from high-dimensional
data generated according to a mixture of overlapping Gaussians and the
case of two prototypes. Simplifying assumptions allow for an exact de-
scription of the on-line learning dynamics in terms of coupled differential
equations. We compare the typical dynamics of the learning processes and
the achievable generalization error.

1 Introduction

Learning vector quantization as proposed by Kohonen has been widely used in
a variety of areas due to its flexibility and simplicity of application [1, 9]. A
couple of modifications have been developed to achieve a larger flexibility, faster
convergence, more flexible metrics, or better adaptation to Bayesian decision
boundaries, to name just a few [4, 8, 9, 14]. The motivation of the methods
differ. Most learning schemes such as basic LVQ are based on heuristics and
their learning behavior is not yet precisely investigated. Others can be derived
from a cost function such as GRLVQ [8] or LVQ2.1, the latter being a limit case
of a statistical model [12, 13]. Thereby, the connection of the cost functions to
the generalization ability is not clear, and only few models explicitely include
regularization terms [7]. In addition, some learning rules suffer from divergent
behavior and modifications such as the window rule for LVQ2.1 become neces-
sary. Thus, an exact mathematical investigation of typical learning scenarios and
their limit behavior would be valuable to judge the performance of the models.

In this work we introduce a theoretical framework in which to analyze and
compare different LVQ algorithms. It considers on-line learning from a sequence
of uncorrelated, random training data generated according to a model distri-
bution, whereby the training schemes do not make use of the form of this dis-
tribution. The dynamics of training is studied along the successful theory of
on-line learning [2, 5, 11], considering the limit N → ∞ where N is the data
dimensionality. In this limit, the typical system dynamics can be described by
ordinary differential equations for a small number of characteristic quantities
and the model behavior and generalization ability can be evaluated.

We apply this formalism to example scenarios of WTA-algorithms such that it
becomes possible to judge the generalization ability of different parameter choices
which correspond to underlying design criteria. The analysis could readily be
extended to more general schemes, approaching the ultimate goal to devise novel
and efficient LVQ training algorithms with exact mathematical foundation.



2 Winner-Takes-All algorithms

We study situations in which vectors ξ ∈ IRN belong to one of two possible
classes denoted as σ = ±1. We restrict to the case of two prototype vectors
{w+, w−} corresponding to the data classes. In WTA-schemes, the squared
Euclidean distances dS(ξ) = (ξ−wS)2 are evaluated for S = ±1 and the vector ξ
is assigned to class σ if d+σ < d−σ. We investigate incremental learning schemes
in which a sequence of single uncorrelated examples {ξµ, σµ} is presented to the
system. Here, we treat updates of the form

wµ
S = wµ−1

S + ∆wµ
S with ∆wµ

S = η
N Θµ

S g(S, σµ)
(
ξµ − wµ−1

S

)
(1)

where wµ
S denotes the prototype vectors after presentation of µ examples. The

learning rate η is rescaled with the vector dimension N . The Heaviside term
Θµ

S := Θ(dµ
−S − dµ

S) singles out the prototype wµ−1
S which is closest to the new

input ξµ. dµ
S is the squared distance (ξµ −wµ−1

S )2. In this formulation, only the
winner wS can be updated whereas the looser w−S remains unchanged. The
change of the winner is always along the direction ±(ξµ −wµ−1

S ). The function
g(S, σµ) further specifies the update rule. We focus on three special cases:

a) VQ: g(S, σ) = 1. Unsupervised vector quantization disregards the actual
data label and moves the winner towards the example input. The aim is a
good representation of data in the sense of Euclidean distances.

b) LVQ1: g(S, σ) = Sσ = +1 (resp. − 1) for S = σ (resp. S �= σ). This
extension of competitive learning to labeled data corresponds to Kohonen’s
original LVQ1. For a correct winner, the update is towards ξµ. A wrong
winner is moved away from the current input.

c) LVQ+: g(S, σ) = Θ(Sσ) = +1 (resp. 0) for S = σ (resp. S �= σ). In this
scheme the update is non-zero only for a correct winner and, then, always
positive, i.e., a prototype wS can only accumulate updates from its own
class σ = S. We will use the abbreviation LVQ+ for this prescription.

Note that the VQ procedure (a) can be readily formulated as a stochastic gra-
dient descent with respect to the quantization error, see e.g. [6]. While intuitively
clear and well motivated, LVQ1 (b) and LVQ+ (c) lack such an interpretation.

3 The model data

To analyze the behavior of these algorithms we assume that data are generated
according to a model distribution P (ξ). As a simple yet non-trivial situation we
consider input data generated according to a binary mixture of Gaussian clusters

P (ξ) =
∑

σ=±1 pσP (ξ |σ) with P (ξ |σ) = 1√
2π

N exp
[
− 1

2 (ξ − λBσ)2
]

(2)

where the weights pσ correspond to the prior class membership probabilities and
p+ + p− = 1. Clusters are centered about λB+ and λB−, respectively. W.l.o.g.
we assume that Bσ ·Bτ = Θ(στ), i.e. B2

σ = 1 and B+ ·B− = 0, thus the length
scale and the location with respect to the origin are fixed.



We assume that the cluster membership σ coincides with the class label
of the data. The corresponding classification scheme is not linearly separable
because the Gaussians overlap. According to Eq. (2) a vector ξ consists of
statistically independent components with unit variance. Denoting the average
over P (ξ |σ) by 〈· · · 〉σ we have, for instance, 〈ξj〉σ = λ(Bσ)j for a component
and correspondingly〈

ξ2
〉

σ
=

∑N
j=1

〈
ξ2
j

〉
σ

=
∑N

j=1 1 + 〈ξj〉2σ = N + λ2.

Averages over the full P (ξ) will be written as 〈· · · 〉 =
∑

σ=±1 〈· · · 〉σ .
Note that in high dimensions, i.e. for large N , the Gaussians overlap signifi-

cantly. The cluster structure of the data becomes only apparent when projected
into the plane spanned by {B+, B−}. However projections in a randomly chosen
two-dimensional subspace would overlap completely. In an attempt to learn the
classification scheme, the relevant directions B± ∈ IRN have to be identified to
a certain extent. Obviously this task becomes highly non-trivial for large N .

4 The dynamics of learning

The following analysis is along the lines of on-line learning, see e.g. [2, 5, 11].
Here we give a brief summary of the results for LVQ and refer to [3] for details.

The actual configuration of prototypes is characterized by the projections

Rµ
Sσ = wµ

S · Bσ and Qµ
ST = wµ

S · wµ
T , for S, T, σ = ±1 (3)

The self-overlaps Q++ and Q−− specify the lengths of vectors w+, w−, whereas
the remaining five overlaps correspond to projections, i.e. angles, between w+

and w− and between the prototypes and the center vectors B±.
The algorithm (1) directly implies recursions for the above defined overlaps

upon presentation of a novel example:

N(Rµ
Sσ − Rµ−1

Sσ ) = η Θµ
S g(S, σµ)

(
yµ

S − Rµ−1
Sσ

)

N(Qµ
ST − Qµ−1

ST ) = η Θµ
S g(S, σµ)

(
xµ

T − Qµ−1
ST

)
+ η Θµ

T g(T, σµ)
(
xµ

S − Qµ−1
ST

)

+η2 Θµ
S Θµ

T g(S, σµ) g(T, σµ) + O(1/N) (4)

Here, the actual input ξµ enters only through the projections

xµ
S = wµ−1

S · ξµ and yµ
σ = Bσ · ξµ, (5)

note in this context that Θµ
S = Θ(Qµ−1

−S−S − 2xµ
−S − Qµ−1

SS + 2xµ
S).

A major assumption is that all examples in the training sequence are inde-
pendently drawn from the model distribution and, hence, are uncorrelated with
previous data and with wµ−1

± . As a consequence, the statistics of the projections
(5) are well known for large N . By means of the Central Limit Theorem their
joint density becomes a mixture of Gaussians, which is fully specified by the
corresponding conditional means and variances:

〈xµ
S〉σ = λRµ−1

Sσ , 〈yµ
τ 〉σ = λΘ(Sσ), 〈xµ

Sxµ
T 〉σ − 〈xµ

S〉σ 〈xµ
T 〉σ = Qµ−1

ST

〈xµ
Syµ

τ 〉σ − 〈xµ
S〉σ 〈yµ

τ 〉σ = Rµ−1
Sτ ,

〈
yµ

ρ yµ
τ

〉
σ
− 〈

yµ
ρ

〉
σ
〈yµ

τ 〉σ = Θ(ρτ) (6)



This observation enables us to perform an average of the recursions w.r.t. the
latest example data in terms of Gaussian integrations. Details of the calculation
are presented in [3]. On the right hand sides of (4) terms of order (1/N) have
been neglected, e.g. using

〈
ξ2

〉
/N = 1 + λ2/N ≈ 1 for large N .

The limit N → ∞ has further simplifying consequences. First, the recursions
can be interpreted as ordinary differential equations (ODE) in continuous train-
ing time α = µ/N . Second, the overlaps {RSσ, QST} as functions of α become
self–averaging with respect to the random sequence of examples. Fluctuations of
these quantities, as for instance observed in computer simulations of the learning
process, vanish with increasing N and the description in terms of mean values
is sufficient. For a detailed mathematical discussion of this property see [10].

Given initial conditions {RSσ(0), QST (0)}, the resulting system of coupled
ODE can be integrated numerically. This yields the evolution of overlaps with
increasing α in the course of training. The behavior of the system will depend
on the characteristics of the data, i.e. λ, the learning rate η, and the actual
algorithm as specified by the choice of g(S, σ) in Eq. (1). Monte Carlo simulations
of the learning process are in excellent agreement with the N → ∞ theory for
dimensions as low as N = 200, already.

The success of learning can be quantified as the probability of misclassifying
novel random data, the generalization error εg =

∑
σ=±1 pσ 〈Θ−σ〉σ . Performing

the averages is done along the lines discussed above [3] and yields εg as a function
of the overlaps {QST , RSσ}. Hence, we can obtain the learning curve εg(α), the
typical generalization error achieved from training with αN examples.

5 Results – dynamics

The dynamics of unsupervised VQ has been studied for p+ = p− in an earlier
publication [6]. Because data labels are disregarded or unavailable, the proto-
types could be exchanged with no effect on the achieved quantization error. This
permutation symmetry is reflected in a weakly repulsive fixed point (f.p.) of the

100 200
0.1

0.2

0.3

0.4

0.5
εg

α 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5ε∞
g

p+

Fig. 1: Left panel: Typical learning curves εg(α) of unsupervised VQ (dotted),
LVQ+ (dashed) and LVQ1 (solid line) for λ = 1.0, η = 0.2, and p+ = 0.8.
Right panel: asymptotic εg for η → 0, ηα → ∞ for λ = 1.2 as a function of
the prior weight p+. The lowest, solid curve corresponds to the optimum εmin

g

whereas the dashed line represents the typical outcome of LVQ1. The horizontal
line is the p±–independent result for LVQ+, it can even exceed min {p+, p−}
(thin solid line). VQ yields an asymptotic εg as marked by the dotted line.



ODE in which all RSσ are equal. Generically, the prototypes remain unspecial-
ized, i.e. orthogonal to (B+−B−), up to rather large values of α, depending on
the precise initial conditions. Without prior knowledge, of course, RSσ(0) ≈ 0
holds. This feature is discussed in [6] and persists for p+ �= p−. While VQ does
not aim at good generalization, we can still obtain εg(α) from the prototype
configuration, see Fig. 1 for an example. The very slow initial decrease relates
to the above mentioned delayed specialization.

In LVQ1, data and prototypes are labeled and, hence, specialization is en-
forced as soon as α > 0. The corresponding εg displays a very fast initial
decrease, cf. Fig. 1. The nonmonotonic intermediate behavior of εg(α) is partic-
ularly pronounced for very different prior weights (e.g. p+ > p−) and for strongly
overlapping clusters (small λ).
Qualitatively, the typical behavior of LVQ+ is similar to that of LVQ1. However,
unless p+ = p−, the achieved εg(α) is much larger, cf. Fig. 1. The effect becomes
clearer from the discussion of asymptotic configurations in the next section.

6 Results – asymptotic configurations

For stochastic gradient descent procedures like VQ, the expectation value of the
associated cost function is minimized in the simultaneous limits of η → 0 and
many examples such that α̃ = ηα → ∞. In the absence of a cost function we
can still consider the above limit, in which the system of ODE simplifies and can
be expressed in the rescaled α̃ after neglecting terms ∝ η2. A f.p. analysis then
yields a well defined asymptotic configuration, see also [6].

For symmetry reasons, the decision boundary with minimal generalization
error εmin

g is given by the plain orthogonal to (B+ − B−) which contains all ξ
with p+P (ξ|+1) = p−P (ξ|−1) [4]. The lowest, solid line in Fig. 1 represents
εmin
g for λ = 1.2 as a function of p+. For comparison, the trivial classification

according to the priors p± yields εtriv
g = min {p−, p+} is also included.

In unsupervised VQ, a strong prevalence, e.g. p+ ≈ 1, will be accounted
for by placing both vectors inside the stronger cluster. Obviously this yields a
poor classification as indicated by ε∞g = 1/2 in the limiting cases p+ = 0 or
1. For equal priors, p+ = 1/2, the aim of representation coincides with good
generalization and εg becomes optimal, indeed.

LVQ1 yields a classification scheme which is very close to being optimal for
all values of p+, cf. Fig. 1. For pσ > p−σ the prototype wσ is placed closer to
the center of the stronger cluster, hence the prevalence is taken advantage of.

On the contrary, LVQ+ updates each wS only with data from class S. As a
consequence, the asymptotic positions of the w± is always symmetric about the
geometric center (B+ + B−)/2 and ε∞ is independent of the priors p±. Thus,
LVQ+ is robust w.r.t. a variation of p±, i.e. here, it is optimal in the sense of
the minmax-criterion inf supp± εg(α) [4].

7 Conclusions

We investigated different variants of WTA algorithms in an exact mathematical
way by means of the theory of on-line learning. For N → ∞, the system dy-
namics can be described by few characteristic quantities, and the generalization



ability can be evaluated also for heuristic settings where a global cost function is
lacking, like standard LVQ. Interestingly, common features of the learning curves
(such as an initial plateau) but also fundamentally different limit solutions can
already be observed for slightly different intuitive learning rules, as shown for
the variants VQ, LVQ, and LVQ+. The final generalization ability of the al-
gorithms differs in particular for unbalanced class distributions where the goals
of minimizing the quantization error, the minmax error, and the generalization
error do not coincide. It is quite remarkable that the simple learning rule of LVQ
shows near optimum generalization error for all choices of the prior distribution.

It should be mentioned that the simple setting of two prototypes considered
above captures important behavior for realistic settings: setting (b) describes the
competition at class borders whereas setting (a) takes place within larger classes
represented by more than one prototype. Setting (c) investigates an intuitive
variant which can be seen as a mixture of VQ and LVQ, i.e. VQ within the classes.
The learning rules tackled so far are restricted to iterative winner updates as
take place in standard LVQ. It is possible to extend the same technique to more
complex update formulas such as LVQ2.1 or the recent proposals [12, 13], which
adapt more than one prototype at a time. Preliminary studies along this line by
the authors show remarkable differences of the generalization behavior for these
versions of LVQ-type algorithms. However, only situations where the model
complexity and data complexity coincide have been considered so far. Interesting
further computations can tackle the typical case of a different number of modes
of the model distribution and clusters of the vector quantizer (e.g. the extreme
case p+ = 0 for simple VQ) in which overfitting can occur.
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