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Abstract. We propose and evaluate a neural network approach to mine
detection using Electromagnetic Induction (EMI) sensors which provides
a robust non-parametric approach. In our approach, a neural network
with the well-known back-propagation learning algorithm combines the S-
Statistic with the δ-Technique to discriminate between non-mine patterns
and mines. Experimental results show that this approach reduces false
alarms substantially over using just the δ-Technique or the energy detector.
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1 Introduction

Antipersonnel landmines are devastating weapons of war, but they are equally
devastating after a war. The vast majority of landmines in use today around
the world have no means of self-neutralization or self-destruction. Millions of
anti-personnel mines are estimated to be buried in the ground of forty countries.
They kill or maim more than 2000 civilians per month and prevent the return
to productive activities of vast areas of land. Demining activities are supported
by several humanitarian organizations, at an estimated cost of $800 per mine
found [1]. Therefore there is a real need for technologies which can render
demining more effective, more cost-effective and safer.

We propose an artificial neural network (ANN) architecture for post-processing
of mine field data, denoted BPNN(δ, S). This architecture is a feedforward
neural network model which is trained using the back-propagation learning al-
gorithm on two features extracted from the data in the mine field: the δ-value
and the S-Statistic. This approach uses data from a small calibrated area to train
the corresponding neural network, which is then used for mine detection over
much larger areas. Our experimental evaluation, using available sensory data
[2] shows that the trained network architecture can be effectively used in areas
which are geographically remote from the calibration area. It is also effective
when tested with sensory data obtained with EMI sensors which have different
characteristics from those which were used to collect the network training data.



1.1 The Minefield Data

The minefield data we use in the present study is based on measurements pro-
vided by DARPA [2], with two different electromagnetic induction sensor sys-
tems, at a variety of geographic locations. These locations are denoted as Firing
Point (FP) 20, Firing Point (FP) 22, Seabee, and Turkey Creek.

One source of inaccuracy in the practical use of the data we employ is related
to the exact location of the sensor being used as data was registered. This is due
to a variety of instrumentation and data collection effects, leading to errors in
registering the sensor’s position as it travels continuously across the minefield.
Hence, we have followed a commonly accepted procedure suggested for using
this data, which is to register the mine locations by analyzing the energy levels
near the approximate known mine locations, if a location is known to contain a
mine, then energy measurement at its immediate neighbors must be lower. To
give an idea of this effect, one of the 5m x 5m regions that we examine is shown
in Figure 1.
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Fig. 1: Energy profile at a mine location in FP20. The z-axis show the energy
value of the coil, and x and y axes are relative x and y positions in the minefield.

2 The Energy Detector, the δ-Technique and the S-Statistic

An energy detector is a simple and useful detection technique which will report
an “alarm” – i.e. a location which may possibly contain a mine – on the basis of
some measured response energy value which exceeds some given threshold [2, 3].
Since it is the simplest possible detection technique, we will use it as a basis for
comparison with other methods. With a low enough threshold energy value, an
energy detector will yield very high probabilities of detection of mines but will
also lead to unacceptably high false alarm rates. Handling false alarms in the
minefield can be almost as expensive as removing a real mine. Since thousands
of false alarms can occur in sweeping a relatively small minefield, it is important



to be able to devise techniques which provide a high probability of detection,
with false alarm rates which are much lower than those resulting from the energy
detector.

One such improved detection technique is the δ-Technique reported in an
earlier paper [4] which significantly reduces false alarm rates by making use
of neighborhood or area information around each location. It determines the
number of neighboring points (there are 8 of them) that have a higher energy
than the current point. If this number is greater than a threshold that you set
(usually 7 or 8), then the point is considered to be a landmine. The idea in using
this statistic is to stress that relative energy values are more significant indicators
of the presence of a target, than absolute levels or differences in energy.

Consider again the energy measurement shown in Figure 1, where we see that
the energy at the mine location is higher than that at neighboring points. If we
assume that this is generally true for most mine locations, and we further assume
that in non-mine locations this property does not hold true, then we would have
a very good indicator that will help us identify mine locations. Just as the δ-
Technique exploits this property, we propose a new and very effective statistic
using this type of local difference information, which we call the S-Statistic,
where:

S =
E(p) − (8 − m)/8

∑
All pn

E(pn)

E(p)
(1)

where m = 7 or m = 8.

3 A Neural Network Mine Detector Using the δ-Technique

and the S-Statistic

For our approach, we combine the S-Statistic with the δ-Technique in a neural
network design. The learning algorithm exploits data from a small calibrated
area to train a neural network which can then be used for mine detection over
much larger areas. The network is only trained with Z-coil 1m data from the
30m × 15m calibration area of a site known as Firing Point 20 (FP20) [2].

We use a three layer feedforward back-propagation neural network (BPNN)
to detect mines and reject false alarms. The network has two input neurons.
When the network is either trained for some location p, or when it is asked
to provide a decision (mine or non-mine) for the location p, one input neuron
receives the input s (see Equation 1) and the other receives δ = m/8 where δ is
the δ-Technique parameter and m is the number of immediate neighbors required
whose energy values are strictly less than the center point’s energy value.

In the network’s output layer there are two neurons which are used to decide
between the two hypotheses (mine or a non-mine) for the location for which input
data is presented. The network has six intermediate (hidden) layer neurons.

In the decision phase, when the network is being applied to data it has not
observed previously, we use a decision variable (D) which is simply the ratio of
output M (hypothesis that the current location is a mine target) to output N



(hypothesis that the current location is not a mine). When the input values s
and δ for a given location are presented to the network and D > 1 the location
is declared to contain a mine; otherwise it is declared not to contain a mine.
Clearly, just as with any other detection algorithm, the neural network is not
“perfect” so that the probability of a false alarm is not 0, and the probability
of correct detection of a mine is not 1. However, as we shall see below, its
performance is remarkably good with little training and across different EMI
sensors.

4 Experimental Results

This section summarizes the performance achieved using neural networks for
land-mine detection. After training the proposed neural network architecture
on the calibration data, it was tested for all available data which includes mea-
surements from both 1m and 0.5m EMI sensor systems (8 separate sets), for all
the data including calibration and “center square” areas. The center square is
a 100m × 100m area in which registration targets are placed. Since the energy
measurements vary from one site to another and also for different sensory sys-
tems, we prepare the results with zero threshold energy level. We report the
results of the energy detector, δ-Technique for δ = 7/8, and the BPNN(δ, S).

The results for the four minefield sites with two different EMI sensors, are
given in Table 1. For all sites we observe that the ANN based technique achieves
substantial reduction in the probability of false alarms over the δ-Technique and
the energy detector, though it may not find as many actual targets as the δ-
Technique.

Table 1: ANN Improvement for Reducing False Alarms for Different Sites with
1m and 0.5m Z-coil Data

Location Names FP 20 FP 22 Seabee Turkey Creek

Data Sensor 1m 0.5m 1m 0.5m 1m 0.5m 1m 0.5m

Points searched 8406 7896 7687 7896 11134 10395 8109 7945

No. of Mines 21 24 24 23 24 24 24 24

FA detected: Energy det. 8385 7872 7663 7873 11110 10371 8085 7921

Mines detected: Energy det. 21 24 24 23 24 24 24 24

FA detected: δ = 7/8 2067 1381 1862 1475 2628 1746 2014 1463

Mines detected: δ = 7/8 21 23 22 22 24 24 24 24

FA detected: BPNN(δ, S) 978 588 868 615 1291 853 985 719

Mines detected: BPNN(δ, S) 20 23 21 21 24 23 24 24

The Receiver Operating Characteristic (ROC) for FP20 is plotted as shown in
Figure 2. This curve represents the relation between the probability of detection
and the probability of false alarms for a certain detector. Three ROC curves are



plotted: (i) for the BPNN(δ, S), (ii) for the δ-Technique, and (iii) for the pure
energy detector.

Fig. 2: ROC curves for FP20 (a) 1m Z coil data (b) 0.5m Z coil data

It can be seen that the ANN detector provides better performance than
the δ-Technique, and both have significantly better performance than the pure
energy detector. For example, we can see from Figure 2 that a 0.08 false alarm
probability is obtained when the probability of detection is 0.5 for the pure
energy detector, 0.57 for the δ-Technique, and 0.80 for the BPNN(δ, S). We
noticed similar improvements for the data from the other sites.

Of course, the ANN based technique requires training and is, therefore, more
complex and computationally more costly than the δ-Technique. Notice also that
for a certain value of the probability of detection, there may be multiple values
of the percentage of false alarms. This is because it sometimes occurs that, as
we vary the energy threshold, the probability of detection remains unchanged
while the false alarm probability varies.

5 Conclusions

In this paper it is shown that the proposed network is very effective in detecting
mines and rejecting false alarms. From our experimental results we can see
that an ANN detector offers a robust non-parametric technique for mine dection
which can significantly out-perform the δ-Technique and the energy detector.
This detector also has the advantage that it can be trained on limited calibration
data and still perform robustly when applied to a variety of geographic locations.
Despite high amounts of clutter in the mine field data, this detector outperforms
other techniques in determining the difference between clutter and actual mines.
Finally, it has been shown in our experiments that the same detector, trained
using one EMI sensor, can be used with data gathered from another sensor. This
indicates that the ANN approach is robust enough to be used with different
sensors which would allow for the mine detector to be forward compatible with



future sensor technologies.
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