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Abstract. We present a principled method to combine kernels under
joint regularization constraints. Central to our method is an extension
of the representer theorem for handling multiple joint regularization con-
straints. Experimental evidence shows the feasibility of our approach.

1 Introduction

The form of the kernel is critical for achieving good generalization in many ma-
chine learning problems employing kernel methods [1]. Kernel design is typically
guided by three criteria. Firstly, the kernel should reflect prior knowledge rele-
vant to the particular problem at hand. Secondly, it should be easy to evaluate
the kernel for prediction purposes. Finally, computation of the kernel matrix on
unseen data should be possible without limitations.

The first two goals can lead to conflicting requirements: for instance, we
may wish to limit ourselves to a small set of functions (e.g. Fourier basis, Fisher
scores, nearest neighbors, a small set of kernel functions, etc.) for the sake of
efficiency. On the other hand, we may want to enforce an estimate with bounded
Sobolev norm (as in the case of the Laplacian kernel), a pseudo-differential
operator (as for the Gaussian kernel), a discrete flatness functional (as for graph
kernels), or locally weighted smoothness functionals. The practitioner then has
one of two unsatisfactory choices: Either choose a kernel suggested by practical
considerations or use only a small subset of the basis functions.

As a second difficulty, information about the data can sometimes only be
effectively captured by evaluating two different kernel functions. For instance,
if the data has both discrete and continuous valued attributes, a graph kernel
might capture interactions among the discrete variables while a Fisher kernel
might be better suited to model the continuous variables. A practitioner is then
forced to either employ a simple combination of kernels, with no control over
the joint regularization properties, or to choose one kernel over the other.
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In this paper, we address the latter dilemma for the practitioner. We discuss a
principled way of combining such kernels which imposes a smoothness constraint
on the estimator with respect to each kernel.

1.1 Notation

We denote by X the space of observations and by X := {x1,...,2,,} C X the
set of observations. A function k£ : X x X — R will denote a Mercer kernel with
a corresponding Reproducing Kernel Hilbert Space (RKHS) Hji. The kernel
function k evaluated on X x X gives rise to the kernel matrix K. Moreover, we
denote by

¢: X > R", (1)
a feature map, and let Q € R™™ with Q = 0, i.e. @ is positive semidefinite.
Then a kernel kg is defined by ¢ and @ as

ko(z,2') = ¢(z) " Q(a’). (2)

The kernel matrix associated with kg is denoted by Kg. With some abuse of
notation we will use Hg to denote the RKHS corresponding to kg.

Functions f : X — R are understood to be members of the corresponding
RKHS Hj. In the finite dimensional cases it will be convenient to denote them
by

f(z) = (¢(x),w) with w € R™. (3)

Outline of the paper: Section 2 contains the extended representer theorem and
its use for joint regularization. We demonstrate the practical applicability of our
finding by experiments in Section 3. We conclude with a discussion and outlook
in Section 4.

2 Joint Regularization

When combining different feature spaces, it may be desirable to find an estimate
which is smooth with respect to one regularization operator, while satisfying
the constraint of being small with respect to a few other regularizers (e.g., by
requiring that the estimate has small variance). This section shows how to deal
with such optimization problems of joint regularization. It lays the theoretical
groundwork for combining kernels on various domains, e.g. kernels on attributed
graphs.

2.1 Extended Representer Theorem

Theorem 1 (Joint Regularization) Denote by H; withi € {1,...,l} « RKHS
and let Remp|f] be a convex empirical risk functional, depending on the function
f X = R only via its evaluations on the set X = {x1,...,x,}. Consider a
convex constrained optimization problem

1
minimizes Remplf] s.t. §||f||%(1 <c Vi, (4)
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for some ¢; > 0. Then there exists a RKHS H with kernel k and scalar product

l
(f,90m =D _ Bilf,9)n, for some B; >0 (5)

i=1

such that the minimizer f* of (4) can be written as f*(z) = Y0, aik(wi, z),
and hence f* € 'H.

Proof (4) describes a convex optimization problem. Hence its minimum is
unique. Furthermore, we can compute the Lagrange function

l 1
L) = R l7)+ 300 (5113, — 1) ©)

with nonnegative Lagrange multipliers )\;. Since L has a saddle point at opti-
mality, there exists a set of A\ for which the unconstrained minimizer of L(f, A*)
with respect to f coincides with the solution of (4). Ignoring terms independent
of f in L yields

n A\
Remplf]+ > > Il (7)
=1

Combining the regularization terms in f into one Hilbert space with 3; = A}
and subsequently appealing to the representer theorem [2] concludes the proof.
|

Note that the condition of convexity is necessary: without this requirement on
Remp[f] we would still be able to obtain a local optimum with suitable Lagrange
multipliers, but we cannot guarantee that the local optimum is the unique global
solution of Eq. (7). Also observe that some of the A; in Eq. (7) could vanish,
corresponding to inactive constraints in (4).

It is also easy to see that the above theorem can be extended, in a straight-
forward manner, to handle norm constraints of the form w; (|| f||#,) < ¢;, where
w; 1 [0,00) — R are strictly monotonic increasing functions.

The consequence of the extended representer theorem is that we can take
convex combinations of regularization functionals in order to obtain joint regu-
larizers.

2.2 Kernels and Metrics

It is well known [1] that for f defined as in Eq. (3) one can exploit linearity in
the Hilbert space ‘H and compute

IF113 = w" Mw where Mij := (¢(w:), ¢(;))n- (8)

It can be easily verified that using the inverse of M as the metric will yield
a kernel with equivalent regularization properties on the subspace spanned by

().
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Lemma 2 (Equivalent Kernel [1]) The kernel k arising from | f||3, on the
space spanned by ¢(-) is given by k(z,2') = ¢(x)" M~1p(z'), where M;; =
<¢($1)5¢(‘x])>ﬁ

The importance of this lemma is that it allows us to establish a relation between
the matrix @) defining the kernel function k¢ (see Eq. (2)) and the function norm
in the space Hg. When combined with the extended representer theorem, this
provides a powerful method for combining various kernels.

2.3 Combining Kernels

We consider two matrices )1 = 0 and @2 = 0 defining kernel functions kg,
and kg, via. Eq. (2). With slight abuse of notation we use ||f||g, to denote
the function norm in Hg,. Let ¢ > 0 be a constant and let A € [0, 1] denote
a confidence parameter which specifies the amount of regularization we wish to
impose on the estimator in Hg, and Hg,. The following lemma asserts that
there is a principled way of obtaining a joint regularizer by combining kernels
k’Ql and kQQ.

Lemma 3 (Joint Kernel) Define Q1, Q2, ¢ and A as above. The joint regu-
larization induced by requiring || f|lo, < ¢/X and ||f]lg, < ¢/(1—A) is equivalent
to requiring || f|lo < ¢ where Q := (AQ7* +(1=X)Q5 ") ~! = 0 and kg is defined
via. Eq. (2).

Proof The proof is straightforward. We require that ||f||g, = w' Q] 'w < ¢/A
and || f|lg, = w' Q5w < ¢/(1—\). By Theorem 1 this is equivalent to requiring
that w' (AQ;' + (1 — \)Qy )w < ¢. By Lemma 2 the corresponding kernel is
induced by Q := (A\Q7" + (1 —\)Qy )"t = 0. ]

Our method allows for kernels to be combined in order to satisfy joint regular-
ization properties.

3 Experiments

The task we chose for our experiments is that of enzyme functional classification,
based on protein structure and sequence information from the Protein Data
Bank [3]. The training set consists of 127 lyase and 127 ligase enzymes with
approximately 400 amino acids per enzyme.

The 3-d structure of a protein molecule is modeled by a labeled graph. The
nodes of the graph represent individual secondary structure elements (SSEs),
namely helices, sheets and turns. Two nodes are connected by an edge if the
corresponding SSEs are neighbors along the amino acid sequence or neighbors
within the 3-d protein structure. The former are labeled with type ”sequen-
tial edges” and their length in amino acids, the latter are labeled with type
” structural edges” and their length in Angstroms.

Each node of the protein graph is labeled with a set of 4 continuous attributes,
namely, the overall hydrophobicity, normalized Van der Waals volume, polarity,
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and polarizability of the SSE, summed up over the constituent amino acids [4].
Additionally, a set of 12 discrete attributes, based on the chemical properties
of the amino acids, are used to describe each node. Consequently, every graph
node is labeled with 4 continuous and 12 discrete valued attributes.

We use a slightly modified form of the random walk graph kernel proposed in
[5]. Given two graphs, our kernel counts the number of matching labeled random
walks of length at most 3. We determine the match between two nodes or two
edges by using a kernel. The measure of similarity between two random walks
is then simply the product of the kernel values corresponding to the nodes and
edges encountered along the walk. Finally, a Support Vector Machine (SVM) is
used to classify the protein graphs.

Edges are compared using a simple kernel. If two edges are of the same type
then the kernel value is 1 if their lengths match and 0 otherwise. This is a valid
kernel because it is obtained by multiplying two delta kernels.

Computing a kernel on the nodes is a challenging problem because the nodes
contain both discrete and continuous attributes. We propose to overcome this
problem by using joint regularization. We use a Gaussian kernel given by

x—2|?

for the continuous valued attributes (¢ = 37), and a normalized linear kernel
given by

’
/ (z,z')
Klinear (xa x ) = e
] - [l
for the discrete attributes.
85 T T T T T T T 100 -
Joint m—
84.8 b Gaussian s
95 r Addition mw— |
846 1 \ 1 _ Linear mmm—
84.4 | \ , 90 r Multiplication ]
\
> 842¢t
& \\ Iy
S sy \ g
g 838} \ 3
\ <

83.6 | \

834 r 1
83.2 1

83

Fig. 1: Left: classification accuracy as a function of A; right: classification
accuracy of different kernels.

Joint regularization is used to combine these two kernels (see Section 2.3).
The classification accuracy for ten-fold cross validation as a function of A is
plotted in Figure 1(left).

To test the efficacy of our method, we also tested the classification accuracy
using four other kernels, namely kgquss and kjipeqr alone, and their sum, kqq4,
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and their pointwise product, k.. We contrast their performance with that of
the best joint regularization kernel in Figure 1(right).

The joint regularization kernel marginally outperforms the other kernels on
the dataset. Also, observe from Figure 1(left) that the performance of the joint
regularization kernel depends on the value of A\. To understand this depen-
dence, recall that when X is close to 0 or 1 we are regularizing very heavily in
the RKHS defined by one kernel while imposing very light regularization in the
complementary space. Given special prior knowledge, this might be a valid strat-
egy to adopt. In our case, both the kernels individually yield good classification
accuracies and therefore require appropriate regularization in both the RKHS.
This is consistent with our observation that intermediate values of A (0.25 - 0.5)
yield the best joint kernel.

4 Discussion and Outlook

In this article, we presented a principled method for combining kernels by using
joint regularization, based on an extended representer theorem.

Preliminary experimental results on a subset of data from the Protein Data
Bank confirm that joint regularization based methods are competitive with ad-
hoc methods, based on prior knowledge, used for combining kernels. As more
and more complex models and data structures are used in bioinformatics and
other areas of applied machine learning, sophisticated combination of kernels on
different data types and on data from different sources is becoming an important
task. Our results indicate that joint regularization allows to combine kernels into
one joint kernel that promises good generalization performance.

Current research is investigating the potential of joint regularization on larger
datasets in bioinformatics. Future work will combine joint regularization with
approaches of kernel matrix approximation.
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