
Contextual Processing of Graphs using
Self-Organizing Maps

Markus Hagenbuchner1, Alessandro Sperduti2 and Ah-Chung Tsoi3 ∗

1- University of Wollongong, NSW - Australia

2- Universit̀a di Padova - Italy

3- Australian Research Council, Canberra - Australia

Abstract. This paper introduces a novel approach to Self-Organizing Maps which
is capable of processing graphs such that the context of vertices and sub-graphs
are considered in the mapping process. The result is that any vertex in a graph is
mapped onto an n-dimensional map depending on its label and the graph structure
as a whole. Experimental results demonstrate that the proposed approach achieves
the desired outcomes.

1 Introduction

Self Organizing Maps (SOMs) are Neural Network Models typically trained in an un-
supervised fashion. SOMs are commonly employed to tasks that require dimension re-
duction or the clustering of data vectors [1]. Recent developments extended the SOM’s
capabilities by allowing the direct processing of more general types of data such as
sequences (e.g., TKM [2], RecSOM [3]), and directed graphs (SOM-SD [4]). In par-
ticular, a SOM-SD processes directed acyclic graphs, with numerical labels attached
to vertices, in a bottom-up fashion, starting from the vertices with no offsprings up to
vertices with no parents. A SOM-SD network processes a vertex at a time, starting
from the vertices with no offsprings and moving to internal vertices according to some
inverse topological order of the vertices of each graph. Letyv = f(xv) be the response
of the network at vertexv. Then, the network inputxv for v is defined as a vector ob-
tained by the concatenation of the data labellllv ∈ R

p and coordinates of the mapping of
children verticesych[v] (i.e., the coordinates of the winner neuron for each child) such
thatxv = [lllv,ych[v]]. These input vectors can be made constant in size if the maximum
outdegree of any vertex in the dataset is known. Assuming that the maximum outde-
gree iso, then for vertices with less thano children the missing children are encoded
by a default code, using, for example, the “impossible” winning coordinate(−1,−1)
for a 2-D map. Training a SOM-SD network is similar to a standard SOM with two
differences: (a) the need to consistently update thexv vectors at each iteration on the
presentation of the training set, and (b) the introduction of weight values in the routine
which computes the best matching codebook:

r = arg min
i

‖(xv − mi)Λ‖ (1)

wherexv is the input vector for vertexv, mi the i-th codebook, andΛ is a m × m
dimensional diagonal matrix with its diagonal elementsλ1,1 · · ·λp,p set toµ1, and

∗This work was partially supported by MIUR grant n. 20033091149005 and an ARC Discovery grant.



λp+1,p+1 · · ·λm,m set toµ2. The constantµ1 influences the contribution of the data
label component to the Euclidean distance (1), andµ2 controls the influence of the
children’s coordinates to the same Euclidean distance.

This way of processing the data corresponds to assuming a causal dependence of
the output of a vertexv only on the outputs already computed for the children ofv. This
property, especially in the case of discrete labels, turns out to be very useful in reducing
the computational burden, since, if a substructure is shared by several different struc-
tures, the output for such substructure needs to be computed only once. Unfortunately,
from a computational point of view, this also means that not all directed graphs can be
discriminated by this way of processing the structures. In fact, a graph with vertices
v1, v2, v3, v4 and labelslllv1 =A, lllv2 =B, lllv3 =C, lllv4 =D, and arcsv1 → v2, v1 → v3,
v2 → v4, v3 → v4, cannot be discriminated from a graph with verticesv1, ..., v5, labels
lllv1 = A, lllv2 = B, lllv3 = C, lllv4 = D, lllv5 = D, and arcsv1 → v2, v1 → v3, v2 → v4,
v3 → v5, since vertexv4 and vertexv5, because of the causality assumption, cannot
generate a different output. A possible solution to this problem, in the context of su-
pervised learning for structured domains, has been proposed by using the Contextual
Recursive Cascade-Correlation model [5], where information about the parents of a ver-
texv coded in frozen units is exploited by the candidate units to generate an output that
depends on the “context” ofv.

In this paper, we explore the possibility to introduce this ability into unsupervised
neural network models and in particular into an extended SOM-SD, that we will refer
to as Contextual SOM-SD.

2 The Contextual Processing of Graphs

In order to achieve contextual processing of information by a SOM-SD when processing
a vertexv of a graph, it is necessary to have available the network response to the parent
vertices when processing a child vertex, i.e. the statesypa[v]. This information is not
available since the network processes data in a bottom-up fashion.

The solution presented in this section exploits the fact thatypa[v] becomes available
once the SOM-SD has been fully trained. Then, a second map is trained using the
ypa[v] as additional (static) information. The approach recursively trains a new map and
initializes theypa[v] using the relevant information available from the previously trained

map. If we denote the output of a standard SOM-SD withy
(0)
v (i.e., the network at level

0), then the input vector for the second map (i.e., the network at level1) will be defined
asx

(1)
v = [lllv,y

(1)
ch[v],y

(0)
pa[v]]. Applied recursively, this scheme will include not only the

information about the parents of a vertex, but also the information about its ancestors.
Thus, a SOM-SD at leveli > 0 will have as input the vectorx(i)

v = [lllv,y
(i)
ch[v],y

(i−1)
pa[v] ],

where we assume that training for network at leveli − 1 has been completed.
The minimum number of levels required to guarantee that the full context of every

vertex is covered, depends on the longest path among two vertices of any graph in the
dataset. If the longest path has lengthd, then the training ofd + 1 networks will ensure
that the full context of any vertex in the graphs is considered.

A generalization of this approach would be to consider for network at leveli, the
use of information coming from all the previously trained networks. Thus, the input



vector for leveli > 0 can be defined as

x(i)
v = [lllv,y

(0)
ch[v],y

(1)
ch[v], . . . ,y

(i)
ch[v],y

(0)
pa[v],y

(1)
pa[v], . . . ,y

(i−1)
pa[v] ].

This approach, however, has the drawback that the size of the input vector increases
with the number of levels, and so do the number of parameters. Another possible gener-
alization would be to explicitly represent information about descendants and ancestors
of a vertexv (i.e.,ch[ch[v]], ch[ch[ch[v]]], ..., andpa[pa[v]], pa[pa[pa[v]]], ...) into the
input vector.

On the basis of this description, the training procedure for a Contextual SOM-SD
can be described as follows:

Step 1 Train a SOM-SD network as described in Section 1.

Step 2 Build a new set of input vectorsx through the concatenation of the data labellllv,
the coordinates of the mapping of child verticesych[v], and the coordinates of the
mapping of parent verticesypa[v] in the previously trained map. The vectors can
be made constant in size if the maximum outdegree and the maximum indegree
of any vertex in the dataset are known. Assuming that the maximum outdegree is
o and the maximum indegree isq, then for vertices with less thano children and
less thanq parents, padding with a default value is applied. As a result, thex is
ank = p + 2o + 2q dimensional vector. The codebook vectorsm for the new
SOM-SD are of the same dimension.

Step 3 Train a new SOM-SD network as in Section (1) with the only difference thatΛ
in Equation 1 is now ak×k dimensional diagonal matrix with diagonal elements
λ1,1 · · ·λp,p set toµ1, λp+1,p+1 · · ·λm,m set toµ2, and all remaining diagonal
elements are set toµ3. The constantµ3 influences the contribution of the parent
coordinates to the Euclidean distance, whileµ1 andµ2 control the influence of
the data label component and the children’s coordinates to the Euclidean distance.

Iterate throughStep 2 andStep 3 at leastd times, whered is the maximum length of
the longest path between any two nodes in the graph.

Note that this approach, given a sufficiently large map, ensures that identical sub-
structures that are part of different graph structures are mapped to different locations.
It can be assumed that a map properly trained will map vertices to the same or nearby
location only if the underlying graph structure is similar. Note also that the complexity
of the training algorithm increases linearly with the size of the training set, the size of
the network, andd. Hence, the approach provides a mechanism which is capable of
finding similar or matching graphs in linear time.

The problem is that the approach is limited to data where the maximum indegree,
outdegree, andd are knowna priori. As a result, it is not possible to directly process
cyclic or undirected graphs. In addition, the algorithm requires an appropriate choice
for the weight valueµ3 which may need to be found through trial and error.

3 Experiments

We use an artificial set of graphs from [6]. The datasets in [6] provide a benchmark
on which most of the recursive neural network architectures were tested. The dataset



used contains 1250 trees with a total of 9420 vertices or substructures. The maximum
out-degree is six, the maximum indegree is one, andd = 2. The vertices of the tree
are labeled by a two dimensional numerical value. Some of the trees are identical in
structure and differ only in the label attached to the vertices. Hence, to capture the
context of any sub-structure, it suffices to train a Contextual SOM-SD with 3 levels1.

A large range of networks were trained. Here we illustrate some results when train-
ing a SOM-SD of size24×16, which is as small as we could go without compromising
too much on the mapping precision. Larger networks generally produced improved
mappings but were not used here to ease the illustration task.

The network featured a hexagonal neighborhood and was trained for 200 iterations
with an initial neighborhood radius of 29 and an initial learning rate 1.0. The resulting
network is shown in Fig. 1. In Fig. 1, the hexagons refer to the codebook location,
the fill color shows the level of activity of the codebook, where white implies that the
associated codebook was not involved in the mapping of any sub-structure, darker col-
ors indicate that more sub-structures were mapped at that location. The best matching
sub-structure is superimposed on every neuron which was activated at least once. For
example, the upper left map shows the SOM-SD at level 0. Root vertices were mapped
at the upper left corner of this map, intermediate vertices were largely mapped near the
right hand end of the map, whereas leaf vertices were mapped at the lower left.

Since at level 0 the SOM-SD is trained in a strictly causal manner where context
information is available only from the children of a vertex, it can be assumed that many
of the sub-structures which are identical in structure are mapped onto the same or nearby
neurons even if the associated completed tree is of a very different architecture. To
verify this claim: that through the contextual processing of patterns it becomes possible
to diversify identical sub-structures according to the context in which they occurred
inside the tree, we examined an arbitrarily chosen neuron at location 18,1 as an example
(the neuron 18,1 is highlighted in the SOM-SD level 0 in Fig. 1) and found that 16
different trees were involved in the mapping of the same sub-structure at this location.
We also found that the trees involved were of very different shape, where some featured
just 6 vertices in total while others featured up to 11 vertices in different configurations.

The 16 trees were then selected and individually mapped at the SOM-SD at level 2.
We also mapped all sub-structures of these trees. Two examples are given in Fig. 1. The
lower two maps show the mapping of all sub-structures of two of the trees. The high-
lighted neuron shows the mapping of the sub-structure which was mapped at location
18,1 in the SOM-SD level 0. It can be observed, that despite of the fact that both trees
(the zoomed structures) feature similar sub-structures, all of them are mapped onto a
different location. The observation made here is of a general nature in that such obser-
vations were made for many other trees and sub-structures. It can be concluded that as
a result each sub-structure is a representation of the associated tree structure as a whole,
and hence, it is demonstrated that the proposed approach to the contextual processing
of information is effective.

These visual observations were supported by quantitative performance measures
computed usinge = 1/N

∑N
i=1,ni �=0 mi/ni andE = 1/N

∑N
i=1,ni �=0 Mi/ni, where

ni is the number of sub-structures mapped at locationi, mi is the greatest number of

1Software and datasets used for the experiments are available from www.artificial-neural.net.



SOM-SD at Level 0 SOM-SD at Level 1

SOM-SD at Level 2

Fig. 1: A SOM-SD of size24 × 16 trained
without context (upper left), with context at
the first level (upper right), with context at
the second level (left). Below, the mapping
of two trees and all their subtrees at level 2.
The two trees had a sub-structure mapped at
the same location (the highlighted neuron at
level 0 in the upper left) when trained with-
out context. The zoomed area is to facilitate
the viewing. No nodes were mapped under-
neath the zoomed area.

Zoom
Zoom



Table 1: The mapping performance. Higher values indicate better performance.
Level e E
0 0.923 0.278
1 0.947 0.488
2 0.904 0.448

sub-structures which are identical in structure and are mapped at locationi. Similarly,
Mi is the greatest number of identical complete trees which are associated with the sub-
structure mapped at locationi. N is the total number of neurons activated by at least
one sub-structure during the mapping process. Hence,e is an indicator of the quality of
the mapping of sub-structures, andE indicates the quality of the contextual mapping
process. Values ine andE can be within(0; 1], where1 indicates aperfect mapping,
and a value closer to0 indicates a poor mapping. Results illustrated in Table 1 show that
ei remains largely unchanged for the three levels, whileE nearly doubles from level 0
to level 1 but remains unchanged between level 1 and level 2. The latter is mostly due to
the limited size of the SOM-SD used in the experiments which was too small to allow
a better diversification in the mappings. Other experiments with larger maps not shown
here produced further significant increases forE at the higher level.

4 Conclusions

It was demonstrated that the proposed approach is effective in diversifying the mapping
of vertices and sub-structures according to the context in which they occur inside a tree.
The approach is simple in that it is a straightforward extension to a SOM-SD, and as
such, leaves the computational complexity unchanged at a linear rate.

Future work will address the computational power of the proposed approach in
greater detail, and will consider an online version of the contextual SOM-SD where
the parent state is updated during the training procedure, and, hence, a single layer
SOM-SD network should suffice to encode contextual information.

References

[1] T. Kohonen. Self-Organizing Maps, volume 30 ofSpringer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995.

[2] G. Chappell and J. Taylor. The temporal kohonen map. InNeural Networks, number 6, pages 441–445,
1993.

[3] T. Voegtlin. Recursive self-organizing maps.Neural Networks, 15:979–992, 2002.

[4] M. Hagenbuchner, A. Sperduti, and A.C. Tsoi. A self-organizing map for adaptive processing of struc-
tured data.IEEE Transactions on Neural Networks, 14(3):491–505, May 2003.

[5] A. Micheli, D. Sona, and A. Sperduti. Contextual processing of structured data by recursive cascade
correlation.IEEE Transactions on Neural Networks, 15:1396–1410, 2004.

[6] M. Hagenbuchner and A.C. Tsoi. A benchmark for testing adaptive systems on structured data. In Michel
Verleysen, editor,7th European Symposium on Artificial Neural Networks, ISBN 2-9600049-9-X, pages
pp. 63–68, Bruges, Belgium, April 1999. D-Facto.


