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Abstract. Recently, the score function difference (SFD) has been applied
to develop ICA algorithms. But such algorithms are not suitable for high-
dimensional data because the SFD estimation in a high-dimensional space
is problematic. In this paper, by investigating the relationship between
mutual independence and pairwise independence, we develop an approach
for ICA with linear instantaneous mixtures and convolutive mixtures based
on pairwise independence. This approach only involves the computation
of the 2-dimensional SFD and can be directly applied to high-dimensional
data. The experimental result illustrates the usefulness of this approach.

1 Introduction

Independent component analysis (ICA) is the main technique to perform blind
source separation (BSS). ICA is a method for finding underlying factors or
sources from multivariate observed data under the assumption that the underly-
ing sources are statistically independent, and further provided that at most one
source is Gaussian when using spatial ICA algorithms.

The outputs of ICA are as independent as possible. Then in ICA we need
to exploit an independence measure. Mutual information is a canonical measure
of independence. The mutual information between random variables y1, ..., yn is
defined as I(y1, ..., yn) =

∑n
i=1 H(yi) −H(y), where y = (y1, .., yn)T and H(·)

denotes the (differential) entropy. ICA can then be performed by minimizing
the mutual information between outputs y1, ..., yn. For simplicity, in this paper
we assume that the number of sources is equal to that of the observations.

Assume x = (x1, ..., xn)T is the observation generated from the vector of
independent variables s = (s1, ..., sn)T by x = f(s). Here we assume all the
variables are zero-mean. Denote the de-mixing procedure by y = g(x|θ). If
the transformation g is one-to-one and admits a continuous Jacobian matrix Jg,
we have H(Y ) = H(x) + E log | detJg(x)|. Since H(x) is fixed, the gradient of
I(y1, ..., yn) with respect to θ only involves the marginal densities [1].

However, in some scenarios, for instance, in ICA with convolutive mixtures
or convolutive post-nonlinear (CPNL) mixtures, g is not one-to-one. Therefore,
in minimizing I(y1, ..., yn), the estimation of joint densities can not be avoided.
In fact, gradient-based algorithms for these problems involve the score function
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difference (SFD), which is the variation of the mutual information resulting from
a small variation in its argument [2]. The SFD can be easily exploited to develop
gradient-based algorithms in mutual information optimization problems. For the
definition of the SFD see Section 2.

In the estimation of the SFD, the estimation of the joint score function, or
the joint probability density function (pdf) py(y) is needed. Due to the “curse of
dimensionality”, the estimation of the SFD required large number of samples and
can be highly biased for high-dimensional data. The algorithms involving SFD
are usually applied to 2-dimensional data. Thus it will be greatly beneficial if we
can avoid the SFD in the learning rule when the data space is high-dimensional.

This paper proposes a scheme to do such a thing. By investigating the
relationship between mutual independence and pairwise independence, in ICA
with linear instantaneous mixtures or convolutive mixtures, we can successfully
separate the sources by ensuring the pairwise independence between outputs.
Consequently, to achieve pairwise independence, we just need to estimate the
2-dimensional SFD, instead of the SFD in the original n-dimensional space. This
paper is organized as follows. Section 2 reviews some definitions and gives the
definition of pairwise score function difference (PSFD). In Section 3, we inves-
tigate the relationship between pairwise independence of outputs and mutual
independence between them in two scenarios, namely the linear instantaneous
ICA and ICA with convolutive mixtures. And based on the relationship, the
scheme to avoid the high-dimensional SFD is proposed in Section 4. Section 5
illustrates the validity of the proposed scheme with experimental results.

2 Some definitions

In this section we briefly review the definitions of the joint score function (JSF),
the marginal score function (MSF) and the score function difference (SFD) for
clarity. For details see [2, 3]. We also define the pairwise score function differ-
ence (PSFD), which will be involved in the ICA algorithms based on pairwise
independence given in Section 4.

The score function of a scalar variable is the opposite of the log-derivative
of its pdf, i.e. ψ(y) = − d

dy log py(y). The MSF of y is defined as ψy(y) =
(ψ1(y1), ..., ψn(yn))T , where ψi(yi) is the score function of yi. The JSF of y is
ϕy(y) = (ϕ1(y), ..., ϕn(y))T , where ϕi(y) = − d

dyi
log py(y). And the SFD of y

is the difference between its MSF and JSF, i.e. βy(y) = ψy(y)− ϕy(y).
We also define the PSFD of y in terms of the SFD of each pair of it compo-

nents. The PSFD is a vector function γy(y) = (γ1(y), ...γn(y))T , where

γi(y) =
n∑

j=1,j 6=i

β1(yi, yj) = (n− 1)ψyi
(yi)−

n∑

j=1,j 6=i

ϕ1(yi, yj) (1)

From the definition, we can see the SFD of each pair of yi is needed to construct
the n-dimensional PSFD γy(y). Therefore for estimating γy(y), we need to
estimate a set of 2-dimensional SFD’s with C2

n = n(n−1)
2 elements.



3 Mutual independence vs. pairwise independence

Mutual independence implies pairwise independence, while pairwise indepen-
dence does not necessarily imply mutual independence. One can easily con-
struct such examples. But in the following two scenarios, pairwise independence
of y1, ...yn can guarantee their mutual independence, and consequently can be
exploited to develop ICA algorithms, which is shown as follows.

3.1 In linear instantaneous ICA

The linear instantaneous ICA model is the basic ICA model. In this model, the
observation x is assumed to be generated by linear transformation of the vector
of independent sources s, i.e. x = As, where A is a non-singular square constant
matrix. ICA aims at producing a vector of statistically independent signals y
by linear transformation y = Wx such that y is an estimate of s.

The Darmois-Skitovich theorem [4] provides the separability of the linear
instantaneous ICA. As a direct application of the Darmois-Skitovich theorem,
Theorem 11 in [5] states that in the linear instantaneous ICA, pairwise indepen-
dence of y1, ..., yn is equivalent to the mutual independence between them, and
they can both be exploited to separate the sources successfully.

3.2 In ICA with convolutive mixtures

In ICA with convolutive mixtures, each element of the mixing matrix A is a
linear time-invariant filter, and si(t) are assumed to be spatially independent
stochastic sequences. The generation model is described in the matrix form
x(t) = [A(z)]s(t) [3]. And the separation system is y(t) = [W(z)]x(t). ICA
aims to produce the outputs yi(t) as a filtered version of the sources si(t).

The theorem, as the extension of the Darmois-Skitovich theorem to the case
of convolutive mixtures, is given in [6], provided that the sequences si(t) are
temporally and spatially independent. Further provided that si(t) are non-
Gaussian, pairwise spatial independence of y(t) can be exploited to do ICA.

Furthermore, as a consequence of the theorem mentioned above, the Funda-
mental Theorem, given in [7], relaxes the assumption that si(t) are whitened,
and focuses on the colored sources si(t) whose innovation sequences are spatially
and temporally independent. From this theorem, we can see in ICA with con-
volutive mixtures, in general the pairwise spatial independence of the output
sequences yi(t) is equivalent to the mutual spatial independence between yi(t),
and it allows us to estimate the original sources up to their filtered version.

4 Use of PSFD in ICA

As discussed in Section 3, in ICA with linear instantaneous mixtures or convolu-
tive mixtures, sources can be successfully separated by enforcing their pairwise
independence. Using pairwise independence of outputs as the objective, the
rules for ICA in these two scenarios involve the PSFD, instead of the SFD.



4.1 For linear instantaneous ICA

Denote the (i, k)-th entry of the de-mixing matrix W by wik. We can calculate
the gradient of the mutual information between yi and yj with respect to wik:

∂I(yi, yj)
∂wik

=
∂H(yi)
∂wik

− ∂H(yi, yj)
∂wik

= E{β1(yi, yj) · xk} (2)

The i-th and j-th rows of W can be updated according to Eq. 2.
We can use the “pairwise processing” mode to update W—in each iteration

we randomly choose a pair of the components of y and update the corresponding
rows of the de-mixing matrix W according to Eq. 2 until convergence.

Alternatively, we can use the sum of mutual information between every pair
of the components of y as the objective function:

J1 =
n−1∑

i=1

n∑

j=i+1

I(yi, yj) (3)

instead of I(y1, ..., yn). J1 is always nonnegative and is zero iff the components
of y are pairwise independent. Combine Eq. 2 and Eq. 3, we can obtain the
gradient of J1 with respect to W , in which the PSFD γy(y) is involved:

∂J1

∂W
= E{γy(y)xT } (4)

This rule is the same as the one with the SFD involved [2], except that here the
SFD, βy(y), is replaced by the PSFD, γy(y). The equivariant algorithm can
be obtained by multiplying Eq. 4 with WT W . Eq. 4 is more stable than the
”pairwise processing” mode. From the definition of the PSFD (Eq. 1) we can
see that the complexity of the PSFD based algorithms is a quadratic function
of n in each iteration.

4.2 For ICA with convolutive mixtures

As discussed in Subsection 3.2, ICA with convolutive mixtures can be performed
by enforcing the independence between the signals yi(t) and yj(t−τ) for all i 6= j
and τ .

Assume each element of W is a causal and finite impulse response (FIR)
filter. Let W(z) = W0 +W1z

−1 + ... +WMz−M . Denote the (i, k)-th entry of
Wl by w

(l)
ik . Analogously as in [3], the gradient of I(yi(t), yj(t− τ)) with respect

to w
(l)
ik is

∂I(yi(t), yj(t− τ))

∂w
(l)
ik

= E{β1(yi(t), yj(t− τ)) · xk(t− l)} (5)

Then we can use the “pairwise processing” mode—in each iteration, we choose
the values of i, j and τ (in [3], τ is randomly chosen from the set {−M, ...,M}),
and the corresponding elements of Wl can be updated according to Eq. 5.



A better way is to minimize the objective function:

J2 =
n−1∑

i=1

n∑

j=i+1

I(yi(t− τi), yj(t− τj)) (6)

J2 is always nonnegative, and it is zero for all values of τ = (τ1, ..., τn)T iff the
stochastic sequences yi(t) and yj(t) are spatially independent for i 6= j. Combine
Eq. 5 and Eq.6, we can get the gradient of J2 with respect to Wl:

∂J2

∂Wl
= E{γ(τ)

y (t)xT (t− l)} (7)

where γ
(τ)
y (t) =

(
γ

(τ)
1 (t), ..., γ(τ)

n (t)
)T , and γ

(τ)
i (t) =

∑n
j=1,j 6=i β1(yi(t), yj(t −

τ ′j)), τ ′j = τj − τi. With the gradient descent method, Wl are updated according
to Eq. 7. For a lower computational load, in our experiment τ1, ...τn are all
randomly chosen from the set {0, ...,M} in each iteration.

5 Simulation

Since the linear instantaneous ICA is a simple case of ICA with convolutive mix-
tures, due to the space limitation, we only demonstrate our proposed scheme with
application in the latter problem. Assuming there is no permutation indeter-
minacy, for measuring the separation quality, we use the output signal-to-noise
ratio (SNR) defined as SNRi = 10 log10

E{y2
i }

E{y2
i |si=0} , where yi|si = 0 stands for

what is at the i-th output, where the corresponding input si(t) is zero.
Five artificially generated signals with 2000 samples are used as the input

spatially independent sequences. They are a sawtooth signal, a sinusoid signal,
an amplitude-modulated signal, a uniformly distributed whitened signal, and
a phase-modulated signal. Each element of W is a 4th-order causal filter, i.e.
M = 4. The learning rate in the gradient descent procedure is µ = 0.07. We
use Pham’s method [1] to estimate the 2-dimensional SFD, because it is very
fast and its result is comparatively accurate. We repeat our method for 20
different runs with the mixing system chosen randomly in each run: Aii(z) =
1 + biiz

−1 + ciiz
−2, and Aij(z) = bij + cijz

−1, j 6= i, where bik are drawn from
the uniform distribution between 0 and 0.6, U(0, 0.6), and cik from U(0, 0.3).

Fig. 1 shows the separation result after 1000 iterations of one run, with
the output SNR’s 23.4dB, 27.5dB, 29.1dB, 23.1dB, and 25.8dB. We can see the
original sources are successfully recovered up to their filtered version. The SNR’s
versus iterations are shown in Fig. 2. In fact for all the 20 runs, the sources are
always successfully recovered, with the worst SNR 20.3dB.

6 Conclusion

This paper concerns how to apply ICA algorithms involving the score function
difference to high-dimensional data. In the linear instantaneous ICA and ICA
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Fig. 1: (a)source sequences; (b)convolutive mixtures; (c)recovered signals. Each
signal has 2000 samples. Only the first 200 samples are given for illustration.
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Fig. 2: Output SNR vs. iterations. (a)SNR1, SNR2, & SNR3; (b)SNR4 & SNR5.

with convolutive mixtures, pairwise independence and mutual independence be-
tween outputs are equivalent. We then use the pairwise score function difference
to develop ICA algorithms. Consequently only the 2-dimensional score function
difference estimation is needed, regardless of the original data dimension.
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