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Abstract. The wrapper approach to feature selection requires the as-
sessment of several subset alternatives and the selection of the one which
is expected to have the lowest generalization error. To tackle this prob-
lem, practitioners have often recourse to a search procedure in a very large
space of subsets of features aiming to minimize a leave-one-out or more
in general a cross-validation criterion. It has been previously discussed
in literature, how this practice can lead to a strong bias selection in the
case of high dimensionality problems. We propose here an alternative
method, inspired by structural identification in model selection, which re-
places a single global search by a number of searches into a sequence of
nested spaces of features with an increasing number of variables. The pa-
per presents some promising, although preliminary results on several real
nonlinear regression problems.

1 Introduction

Consider a multivariate supervised learning problem where n is the size of the
input vector X = {x1, . . . , xn}. In the case of a very large n, it is common
practice in machine learning to adopt feature selection algorithms [2] to improve
the generalization accuracy. A well-known example is the wrapper technique [4]
where the feature subset selection algorithm acts as a wrapper around the learn-
ing algorithm, considered as a black box that assesses (e.g. via cross-validation)
feature subsets. If we denote by S = 2X the power set of X , the goal of a
wrapper algorithm is to return a subset s ∈ S of features with low prediction
error. In this paper we will focus on the expected value of the squared error, also
known as mean integrated squared error (MISE), as measure of the prediction
error.

Since the MISE is not directly measurable but can only be estimated, the
feature selection problem may be formulated in terms of a stochastic optimiza-
tion problem [3] where the selection of the best subset s has to be based on
a sample estimate M̂ISE. Consider the stochastic minimization of the positive
function g(s) = E[G(s)], s ∈ S, that is the expected value function of a random
function G(s) > 0. Let G(s) be a realization of G(s) and

ŝ = arg min
s∈S

G(s) (1)

In general terms, coupling the estimation of an expected value function g(s) with
the optimization of the function itself should be tackled very cautiously because



of the well-known relation [6]

E[min
s∈S

G(s)] = E[G(ŝ)] ≤ min
s∈S

E[G(s)] = min
s∈S

g(s) = g(s∗) = g∗ (2)

where g∗ is the minimum of g(s) and Ĝ = G(ŝ) = mins∈S G(s) is the minimum
of the resulting “approximation problem” (1) dependent on the realization G
of the r.v. G1. This relation states that the minimum of an expected value
is optimistically estimated by the minimum of the corresponding sample func-
tion. Also, since ∀ŝ, mins∈S g(s) ≤ g(ŝ), we have mins∈S g(s) ≤ E[g(ŝ)] and
consequently from (2) that

E[min
s

G(s)] = E[G(ŝ)] ≤ E[g(ŝ)]. (3)

This means that the minimum G(ŝ) of a sample function is also a biased estimate
of the average value of the function g(·) in ŝ.

Suppose now that, for a given subset of features s ∈ S, g(s) denotes the
mean integrated squared error MISE(s) and that G(s) = M̂ISE(s) is the (al-
most) unbiased estimate of MISE(s) returned by cross-validation or leave-one-
out [1]. The wrapper approach to feature selection aims to return the minimum
ŝ of a cross-validation criterion M̂ISE(s).2 According to the relations above,
it follows that the quantity M̂ISE(ŝ), returned by the wrapper selection, is a
biased estimate both of the minimum MISE(s∗) and of the generalization per-
formance E[MISE(ŝ)]. The first contribution of this paper is the adoption of
an additional and external cross-validation loop to assess the expected value
of MISE(ŝ) for a wrapper algorithm W . In the following we will denote this
estimate by M̃ISE(W).

The risk of overfitting cross-validation data was already discussed in [7, 8]
and references therein. The paper [7] proposed an alternative to cross-validation
to avoid overfitting, called percentile-cv. Here we do not intend to propose an
alternative criterion to cross-validation, but to stress that whatever the selection
process may be, this is not able to return together with a minimum ŝ also a
reliable assessment of its average performance.

The second contribution of the paper is to propose an alternative to conven-
tional wrappers with the aim to reduce the expected value of MISE(ŝ). The idea
is that, for very large n, a conventional wrapper selection, intended as an inten-
sive search in a huge space S, can return an almost unbiased ŝ but at the cost of
a very large variance of ŝ. This means that values of ŝ far from the optimum s∗

can occur with probability higher than zero, thus inducing a large mean value
of MISE(ŝ). A solution based on early stopping was proposed in [5]. Here we
propose an alternative approach based on the structuration of the search space
S in a sequence of nested spaces S1 ⊂ · · · ⊂ Sn = S, where Sj is the class

1Throughout the paper, boldface denote random variables and normal font realizations of
random variables.

2In this paper we will suppose that the wrapper algorithm is able to return the global
minimum of G(s), although in practice, this is known to be a NP-hard problem.



of all the subsets of X having a cardinality less or equal than j. This means
that instead of performing a global search in the space of features, the algorithm
aims at assessing n different search processes Wj in spaces Sj, j = 1, . . . , n, of
increasing cardinality. If we denote by ŝj the subset returned by the search Wj

in Sj , the final selection can be obtained either by selecting or combining the
predictors based on ŝj according to the the values M̃ISE(Wj) returned by an
external cross-validation loop. The use of an external cross-validation loop was
advocated in [10] for comparing alternative selection methods. Here we use it
to improve the accuracy of a given selection technique.

The preliminary experimental results on several artificial and real regres-
sion tasks in the case of a forward selection search strategy appear to be very
promising.

2 Feature selection as a stochastic optimization problem

Consider a supervised regression problem where the training set
DN = {〈X1, y1〉, 〈X2, y2〉, . . . , 〈XN , yN 〉} is made of N pairs 〈Xi, yi〉 ∈ X × Y
i.i.d. distributed according to the joint distribution P (〈X, y〉) = P (y|X)P (X).
Let us define a learning machine by the following components: (i) a parametric
class of hypothesis functions h(s, αs) with αs ∈ Λs, where s ⊆ X , (ii) a quadratic
cost function C(y, h) = (y − h)2, (iii) an algorithm of parametric identification
that for a given subset s ⊆ X and a given training set DN returns a hypothe-
sis function h(·, αs

DN
) with αs

DN
∈ Λs such that

∑
〈s,y〉∈DN

C
(
y, h(s, αs

DN
)
) ≤∑

〈s,y〉∈DN
C (y, h(s, αs)) for all αs ∈ Λs. We may formulate the feature selection

problem as a stochastic discrete optimization problem [3]

min
s∈S

g(s) = min
s∈S

MISE(s) = min
s∈S

�
EDN

��
X

�
Y
(y − h(s, αs

DN
))2dP (y|s)dP (s)

��
=

= min
s∈S

E [G(s)] (4)

where the mean integrated square error MISE(s) of the subset s ⊆ X is not
observed directly but estimated by M̂ISE(s).

Let
s∗ = argmin

s∈S
g(s), MISE∗ = min

s∈S
g(s) = g(s∗) (5)

be the optimal solution of the feature selection problem and the relative optimal
generalization error, respectively.

3 The structured wrapper method

Consider a wrapper algorithm W (e.g. a forward search) which searches in
the space S, assesses the subsets s of features according to the cross-validation
measure M̂ISE(s) and that returns the subset

ŝ = argmin
s∈S

M̂ISE(s) = W(DN ) (6)



This algorithm can be considered as a mapping from the space of datasets of size
N to the space S of subsets of X . Since DN is a random variable, the variable
ŝ is random too. From Equation (3), it follows that the internal cross-validation
measure M̂ISE(ŝ), i.e. the minimum attained by W , is a biased estimate of
E[MISE(ŝ)]. As an alternative to this inaccurate measure, we propose an exter-
nal cross-validated estimate of E[MISE(ŝ)]. We define by ŝ−k(i) = W(D−k(i)

N )
the feature subset selected by the wrapper algorithm on the basis of D

−k(i)
N , i.e.

the dataset DN with the k(i) part set aside. We adopt the quantity

M̃ISE(W) =
1
N

N∑
i=1

(
yi − h(ŝ−k(i)

i , αŝ−k(i)

D
−k(i)
N

)
)2

(7)

to estimate the expected value of E[MISE(ŝ)] for the wrapper algorithm W .
According to well-known properties of cross-validation, we can consider the es-
timator (7) as an almost unbiased estimator of E[MISE(ŝ)] [1]. This estimator
can be used to assess the quality of a given wrapper algorithm W or better to
choose between different wrapper strategies. We argue that alternative wrap-
per strategies, differing for the size of the explored space, the assessment of the
subsets and the exploration policy, may produce different distributions of ŝ, and
consequently different values of E[MISE(ŝ)]. The unbiased estimator M̃ISE(W)
provides an improved measure wrt the internal cross-validation to compare and
choose among alternative wrapper strategies.

Here we propose to adopt the estimate M̃ISE to perform a structured ex-
ploration in the power set S = 2X in the case of high dimensionality n. The
rationale of the approach is that, in case of huge spaces S, the outcome ŝ of an
intensive search policy is an unbiased estimator of s∗, but potentially with large
variance. In order to better control the bias/variance trade-off we propose, ac-
cordingly to what is done in model selection tasks, to structure the space S into
a nested sequence of spaces S1 ⊂ · · · ⊂ Sn = S where Sj = {s : |s| ≤ j}. The
approach consists in running in parallel n wrapper strategies Wj , j = 1, . . . , n,
each constrained to search in the space Sj . Each wrapper strategy returns a
subset ŝj ∈ Sj, made of |ŝj | ≤ j features. The expected generalization error of
each strategy is measured by M̃ISE(Wj).

The outcome of the structured wrapper algorithm can be obtained either by
winner-takes-all policy

s̃ = ŝj̃ , where j̃ = arg min
j=1,...,n

M̃ISE(Wj) (8)

or by combining the models associated to the best B subsets, e.g. by using a
weighted average of their predictions (generalized ensemble method [9]). Suppose
the estimates M̃ISE(Wj) have been ordered creating a sequence of integers {jb}
so that M̃ISE(Wjh

) ≤ M̃ISE(Wjk
), ∀h < k. The resulting prediction is given by

h(X) =
∑B

b=1 ζb h(ŝjb
, αŝjb )∑B

b=1 ζb

, ŝjb
⊆ X (9)



Dataset Housing Cpu Mpg Servo Ozone Bodyfat Bupa Stock Abalone
N 506 209 392 167 330 252 345 950 4177
n 13 6 7 8 8 13 6 9 10

Site ML ML ML ML Breiman CMU ML L. Torgo ML

Kin 8fh Kin 8nh Kin 8fm Kin 8nm Bank-8fh Bank-8nh Bank-8nm Bank-8fm
8192 8192 8192 8192 8192 8192 8192 8192

8 8 8 8 8 8 8 8
Delve Delve Delve Delve Delve Delve Delve Delve

Table 1: A summary of the characteristics of the datasets considered.

where the weights are the inverse of the estimated mean squared errors: ζb =
1/M̃ISE(Wjb

).

4 Experimental results

We test the effectiveness of the structured approach in the case of forward se-
lection (FS), a well-known example of wrapper approach to feature selection.
In order to perform the experiments we choose a Nearest Nearest Neighbor as
learning algorithm.

The experimental session is based on 17 regression datasets (Table 1) down-
loaded from several dataset repository: the Machine Learning Repository3 (ML),
the Leo Breiman ftp site4, the Luis Torgo Regression dataset repository5, the
DELVE6 repository and the CMU7 repository. In order to increase the dimen-
sionality of the problem we add to each dataset a number 2n of irrelevant features
obtained by randomizing the original features of the dataset.

For each dataset we generate five times a random training subset of N =
50, 75, 100, 125, 150 samples, respectively, and we use it to perform conventional
forward selection and structured forward selection. The assessment of the fea-
ture selection procedures, in terms of squared prediction error, is made on the
remaining test samples. The internal cross-validation M̂ISE(s) and the exter-
nal cross-validation M̃ISE(s) are obtained by leave-one-out, and ten-fold cross
validation, respectively. Globally we carried out 17 ∗ 5 = 85 experiments. The
first column of Table 2 reports the number of times that the structured for-
ward selection (SFS) approach outperforms the conventional forward selection
(FS) vs. the number of times that FS outperforms SFS. The second column
of Table 2 reports the number of times that SFS significantly outperforms FS
vs. the number of times that FS significantly outperforms SFS (paired t-test
with p-value=0.05). The two rows concern the winner-takes-all (WTA) and the
combined (CMB) version of SFS for B = 10, respectively.

3www.ics.uci.edu/∼mlearn/MLSummary.html
4ftp.stat.berkeley.edu/pub/users/breiman
5www.liacc.up.pt/∼ltorgo/Regression/DataSets.html
6www.cs.toronto.edu/∼delve/
7lib.stat.cmu.edu/



Method SFS vs. FS SFS vs. FS (paired t-test)

WTA 40-22 25-9

CMB 77-8 66-4

Table 2: Number of times (out of 85 experiments) that SFS (WTA and CMB)
outperforms FS vs the number of times that FS outperforms SFS in terms of
prediction accuracy.

These results, although preliminary, show the interest for exploring a struc-
tured approach to feature selection. The main open issue is, however, how to
reduce the additional computational burden due to the outer cross-validation
loop. We expect that possible solutions may derive from (i) the adoption of
faster methods (e.g. racing and subsampling) for internal and external cross-
validation assessment, (ii) the use of a stopping criterion for avoiding wrapper
searches in large dimensional spaces based on the behaviour (e.g. local mini-
mum) of the M̃ISE quantity.
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