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Abstract. Temporal sequence generation readily occurs in nature. For exam-
ple performing a series of motor movements or recalling a sequence of episodic
memories. Proposed networks which perform temporal sequence generation are
often in the form of a modification to an auto-associative memory by using hetero-
associative or time-varying synaptic strengths, requiring some pre-chosen temporal
functions. Intra-modular synapses are trained auto-associatively with a Hebb rule,
while a set of inter-module synapses are hetero-associative. Our model is compared
to one by Lisman, which uses hetero-associative recurrent synapses in one of the
modules, and auto-associative synapses between modules.

1 Introduction

Understanding brain mechanisms for storing and recalling sequences is an important
unsolved problem in neuroscience. From a computational sequence perspective, a se-
quence S of length p is a list ξ1, ξ2, . . . ξp of patterns, each pattern representing a mem-
ory in the sequence characterized by the firing rate of each node in a recurrent (associa-
tive) network (i.e. ξµ ∈ {1,−1}N where ξµ

i = 1 indicates node i is firing at a maximal
rate and ξµ

i = −1 means node i is not firing at all). Here we only discuss simple se-
quences in which the presence of one pattern predicts the next pattern in the sequence
uniquely.

Most approaches to storing a sequence of patterns in memory are based on modi-
fication to associative networks. Hopfield [1] suggested a modification to the Hebbian
learning rule using hetero-associatively trained weights
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combined with the usual auto-associative weights
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in a node governed by leaky integrator dynamics on a time scale of τ
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Si(t) = tanh(hi(t)). (4)



A recurrent network using Equation 3 should be able to move its state from one pat-
tern to the next in the sequence. However, in simulations the result is that, when λ is
too small, the network makes no transitions between patterns at all, usually attracting
to the pattern closest to S(0). As λ gets larger the network tends to transition to a
later pattern in the sequence before it has come to fully represent the current pattern in
the sequence, causing it to overlap a number of consecutive patterns and consequently
lose the sequence entirely. Accurate sequence generation using this approach has only
been successfully demonstrated for sequences of length four [1, 2]. More successful
approaches depend on some explicit timing mechanism, for example delayed synapses
[3, 4, 5], time-dependent synaptic strengths [6, 7] or the interaction from time-decaying
short term memory of previous patterns in the sequence [8, 9, 4, 3].

Various multi-modular approaches to sequence processing [5, 6, 10] have been pre-
viously proposed, each with different capabilities in terms of the types of sequences they
can recall and recognize. Here we propose a pair of connected recurrent associative net-
works X and Y to generate simple temporal sequences of patterns. Each module uses
auto-associative Hebbian learning in its recurrent synapses, with hetero-associatively
trained synapses (which associate a given pattern with the pattern following it in the
sequence) from Y to X . The model is compared to one with major features proposed
by Lisman [10], which in contrast uses hetero-association in one of the sets of recur-
rent synapses and auto-association elsewhere. By using hetero-associative synapses
between, rather than within, modules, we avoid difficulties when a module moves to-
ward the next pattern in the sequence while still having only a partial representation
of the current pattern, causing poor retrieval and loss of sequence information. Rather,
the inter-module hetero-associations cause one module to push the other toward the
next pattern in the sequence, and when it is sufficiently close, to use auto-association to
clean its representation of that pattern.

2 The Model

The model we propose uses hetero-associative synapses between modules, with the
architecture shown in Figure 1, with wXY , the synaptic strengths of connections from
Y to X , set according to Equation 1 and all other weights set according to Equation 2.
The dynamics of this model are given by
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(and similarly for Y ). The λs are independent parameters used to adjust the relative
strengths of the inter and intra-module connections.

Each module can be considered to work somewhat independently, cleaning up its
own representation of the current pattern in the sequence ξµ. When module Y has
a “clean enough” representation of ξµ, it begins to push module X toward the next
pattern in the sequence, ξµ+1, due to hetero-associations. In this way a natural timing
can be achieved from the competition between the two modules:
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Fig. 1: The proposed network, a pair of connected modules X and Y . wXX , xY Y ,
wY X and wXY represent the synaptic strengths in the recurrent connections in mod-
ules X and Y , and the inter-module connections from X to Y and from Y to X re-
spectively. The network in Lisman’s model [10] is similar, with wY Y trained hetero-
associatively (Equation 1), and all other weights set auto-associatively (Equation 2).
In our model wXY is trained hetero-associatively (Equation 1), and all other weights
auto-associatively (Equation 2).

1. When they both represent the same pattern, ξµ, there is competition between the
recurrent synapses of module X , which want to continue attracting toward ξµ,
and between the inter-module synapses from Y , which want to push X toward
ξµ+1.

2. When X represents ξµ+1 and Y ξµ, there is a competition between the recurrent
synapses of module Y , which want to continue attracting toward ξµ, and the
inter-module synapses from X to Y , which want to push Y toward ξµ+1.

The temporal behaviour is a consequence of the growth of these forces and their nec-
essary alternation, in that, when Y ’s strength is maximal X should be in transition and
hence its strength is minimal, and vice-versa. For example in case 1 above, the strength
of Y pushing X toward ξµ+1 is related to how clearly ξµ is represented in Y , i.e. how
close SY (t), the firing rates of nodes in module Y at time t, are to ξµ. As module Y
draws closer to ξµ, eventually its strength in moving X toward ξµ+1 becomes large
enough to push X into the basin of attraction for pattern ξµ+1. At this point X has a
small strength in affecting Y as it is far away from, but moving toward, ξµ+1. As X
draws closer to this attractor its strength in pushing Y toward ξµ+1 increases until this
occurs, at which point Y s strength becomes minimized during its transition. To achieve
these dynamics the inter-module synapses must be weighted higher than the recurrent
synapses, so that the forces from module Y are sufficient to affect the course of module
X when Y is sufficiently close to one of the stored patterns and vice-versa. The time for
which each pattern is stable can hence be adjusted with the strength of the inter-module



connections. When they are made stronger, Y has more effect on X (and vice versa),
moving it from a stable pattern more quickly and resulting in a smaller amount of time
in which a pattern is represented.

In order to understand how, in the brain, synaptic strengths could evolve as de-
scribed, we consider a sequence of events as it occurs. Pattern ξ1, representing the first
event in the sequence, will be excited in module X by the cortical input, and through
excitatory connections from X to Y , the nodes of Y will in turn be excited to pattern
ξ1. After this, the event which is encoded as ξ2 takes place, causing X to be stimulated
to this pattern by the cortex. Meanwhile module Y has sustained firing in the pattern ξ1

(a phenomenon which has been observed in the hippocampus), hence excitation of ξ1

in module Y has been followed by excitation of ξ2 in module X , and Hebbian learning
causes the hetero-association of ξ2 from ξ1 in the Y → X synapses. By contrast, auto-
association is learned in the X → Y synapses, since excitation of ξ1 in X results in the
firing of ξ1 in Y . Auto-association is also learned in the recurrent connections of both
modules, as usual for rate models in recurrent networks.

3 Experiments

The network in Figure 1 was implemented in two cases: where wXY is hetero-associative
and the other weights are auto-associative (our model), and where wY Y is hetero-
associative and the other weights are auto-associative (Lisman’s model). We initialized
the networks with noisy versions of the first pattern in module X and a random pattern
in module Y and measured the overlap between the network states and the stored pat-
terns, S′(t)ξµ/N . Figure 2 shows the result of a sequence recall of six random patterns
using our model with N = 1000 nodes for each module. It is easy to find strength pa-
rameters that lead to good sequence recall. The values for the example shown in Figure
2 are λXX = λY Y = 1, λY X = 1.2 and λXY = 1.8. Each pattern is stable for some
period with large overlaps to a stored pattern.

The same experiment was attempted with Lisman’s model, but we were not able to
find appropriate parameters to get consistent results. We found that typically the nodes
of module Y either attract quickly to some stable fixed point which does not represent
any of the stored patterns, or, as λY Y is increased, experiences very rapid oscillations
without settling to any particular state. Module X meanwhile usually attracts to a fixed
point, or will make state transitions if Y is oscillating and λXY is large enough. An
example that shows some form of transitional dynamic in simplified Lisman model is
shown in Figure 3. The problem with tuning the λs is as follows: increasing λY X

increases the chance that X can be brought into the basin of attraction of a particular
pattern in order to clean up its representation of this pattern, but as Y continues to
oscillate, this increases the chance that X will be disrupted from cleaning up its current
pattern. Both modules were initialized to the first pattern without noise. Initializing the
modules with different patterns in Lisman’s model increased the difficulty in finding
satisfactory λs. Decreasing the number of nodes and pattern adds some stability to the
sequences, but this may be an artifact of small networks.
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Fig. 2: Result of recall of a learned sequence of six random patterns using the proposed
model with N = 1000 nodes in each module. The inter-module synapses from X to
Y were given a weight of λY X = 1.2 times larger than the intra-module (recurrent)
synapses, and the inter-module synapses from Y to X were given a weight of λXY =
1.8 times larger. Sequence recall was initiated by setting the firing rates of nodes in
module X to the first pattern with 30% noise, and the firing rates of nodes in module
Y to a pattern with randomly chosen binary rates. (top) The overlap between the firing
rates SX(t) of the nodes in module X and each of the stored patterns. (bottom) The
overlap between the firing rates SY (t) of the nodes in module Y and each of the stored
patterns.

4 Conclusions and Future Work

Multi-modular approaches to sequence generation have an advantage over approaches
involving a single recurrent network in that timing can be achieved solely from the dy-
namics of the interaction between the modules. Effective approaches involving a single
module rely on an explicit temporal function which must be chosen ahead of time. The
model studied in this paper, with hetero-associative connections between the modules,
is able to learn and generate simple sequences easily and reliably, in contrast to an ar-
chitecture that connects a hetero-associative module with an auto-associative network.
Our architecture permits storage of sequences with arbitrary and varying time scales;
it does not require combining a trace of previous activity in a recurrent net with new
activity, as the pattern in different networks can be timed differently and learning occurs
between these pattern. We are currently investigating further the possible involvement
of such modular network sequence storage to hippocampal function.
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Fig. 3: Result of recall of a learned sequence of four random patterns using the mod-
ified Lisman model with N = 1000 nodes in each module. The parameters used
were λXX = 1, λY Y = 2.5, λY X2, λXY = 4. The simulation was performed in
a similar way as that of Figure 2. Both modules were initialized with the first pattern
without noise. The result shows the pattern oscillations of module Y due to its hetero-
associative synapses (bottom), and the oscillations of module X (top) due to (selective)
interaction from Y .
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