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Abstract. ‘Super-lamprey’ swimmers which operate over a greater con-
trol range are evolved. Propulsion in the lamprey, an eel-like fish, is gov-
erned by activity in its spinal neural network. This CPG is simulated,
in accordance with Ekeberg’s model, and then optimised alternatives are
generated with genetic algorithms. Extending our prior lamprey work on
single segment oscillators to multiple segments (including interaction with
a mechanical model) demonstrates that Ekeberg’s CPG is not a unique
solution and that simpler versions with wider operative ranges can be gen-
erated. This work ‘out-evolves’ nature as an initial step in understanding
how to control wave power devices, with similar motion to the lamprey.

1 Introduction

The system explored in this paper is the lamprey’s Central Pattern Genera-
tor (CPG) (see [1]) which controls swimming in varying water conditions. Our
ultimate endeavour is to develop an adaptive controller based on this architec-
ture to optimise the efficiency of wave power devices operating in irregular sea
states. Initial work with a simple controller derived from the lamprey CPG
demonstrates improved performance of a single-point Wave Energy Converter
(WEC) [2]. However, further exploration of the lamprey CPG is necessary, so
this paper assesses the flexibility of the complete multi-segment lamprey CPG;
with evolved parameters not previously considered. Recent work [3] generated
improved single-segment oscillators; less complex and with a wider range of op-
erability. Interaction with a full scale, multi-segment mechanical model requires
the evolution of interconnections between segments also, where optimum per-
formance is signified by their capacity to control swimming at different speeds,
oscillation frequencies and segmental phase shifts.

2 Artificial Neural Network Inspired by the Lamprey

2.1 The Neural Model

The lamprey (fig. 1a) is an eel-like fish which propels itself by propagating
an undulatory wave with increasing amplitude from head to tail. A system of
interconnected neurons along its spinal column are responsible for controlling
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Fig. 1: a) The lamprey, b) Mathematical description of the model CPG neuron,
c) Connectionist model of the lamprey’s spinal CPG.

the fish’s anguiliform swimming movements. This spinal control system (or
CPG), consists of several copies of an oscillatory neural network which cause
rhythmic activity of motoneurons which in turn alternate motion between the
two sides of the fish’s body. The lamprey’s CPG is relatively simple and it
has therefore been possible to isolate the system in vivo, determine detailed
cell models, analyse electrochemical reactions to stimulation of the neurons and
reproduce the network artificially [1, 4].

The entire network can be reduced to a simplified connectionist model. The
system’s model neuron is non-spiking and represents a population of functionally
similar neurons. The CPG receives delayed excitatory and inhibitory input and
its output is calculated from first order differential equations (fig. 1b). Output
u (eqn. 4, fig. 1b) of each neural unit represents the mean firing frequency of
the population. Excitatory (ξ+) and inhibitory (ξ−) synaptic inputs (eqns. 1-2)
are added separately and are subject to time delays (τD and τA). The terms Ψ+

and Ψ− represent the groups of pre-synaptic excitatory and inhibitory neurons
respectively and wi denotes the synaptic weights associated with the inputs. The
excitatory input is transformed by a transfer function which provides saturation
at high levels of excitatory input. Finally, a leak is included as delayed negative
feedback (eqn. 3). Parameters of threshold (Θ), gain (Γ) and mu (μ) of equation
4 are tuned to match the response characteristics of the corresponding neuron
type based on experimentally established connectivity (see [1]).

Fig. 1c displays two of 100 replicas of an oscillating segment. Intercon-
nections between neurons within a single segment of the CPG are highlighted.
There are four neuron types on each side of the network: Excitatory neurons
(EIN), contralateral inhibitory interneurons (CIN), lateral inhibitory interneu-
rons (LIN) and motoneurons (MN) which provide output to the muscles. Edge
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cells (EC) provide feedback to the neural system and thus allows the network
to adjust for external forces while maintaining straight line swimming [5]. In-
put to the pattern generator consists of tonic (i.e. non-oscillating) signals (also
referred to as global excitation) from the brainstem which control the frequency
of oscillation. These inputs connect to all the neurons in the CPG. A further
tonic input, (referred to as extra excitation), is applied to the first five segments
of the CPG. Tonic inputs are not shown in fig. 1c for reasons of clarity. Each
segment functions as a non-linear oscillator and is coupled to its neighbours
through extensions of interneural connections towards the head (rostral) and
the tail (caudal). These are depicted in fig. 1c by the vertical dotted lines.

2.2 A Mechanical Model of the Lamprey and its Environment

In order to view the effects of the neural controller, a simulation of the mechanical
model [1, 5] of the lamprey interacting with water is implemented. The body
comprises ten rigid links (each 30mm long) whose movement is constrained,
forcing them to stay connected, by joints with one degree of freedom. Each
mechanical link corresponds to ten neural segments. Muscles are connected to
each link and are modeled as a combination of springs and dampers. Three forces
act upon each link: (1) water forces which apply pressure perpendicular and
parallel to the object, (2) inner forces which exert pressure from neighbouring
links, and (3) muscular torques which ensure the link does not bend in both
directions at once. The bending torques are controlled by the activation of
muscles on both sides of the body. These muscles are assumed to be the length
of local curvature of the body. Motoneuron activity alters the spring constants
of corresponding muscles which in turn produce forces that cause movements.
This enables the neural network to vary both the total bending force and the
stiffness locally along the body. Information about the curvature of the body is
fed back to the neural network via stretch sensitive edge cells.

The simulation of the mechanical model successfully demonstrates that alter-
nating oscillatory motoneuron activity of the neural CPG produces the expected
anguiliform swimming behaviour. Further details of the procedures used to con-
vert neural responses into movement are outlined in [1, 5].

3 Optimising the Model using Genetic Evolution

The lamprey comprises several interconnected oscillatory segments. Single seg-
ment controllers, shown to be more efficient than the biological prototype [1],
were evolved in prior research [3]. These oscillators operate over a wider range
of frequencies and are much simpler in terms of internal connectivity. Further-
more, neural parameters (which describe the dynamics of the model neurons)
were evolved which were previously not manipulated [5]. Following on from the
results obtained in these tests, intersegmental connections between 100 copies
of a fixed segmental network are generated using genetic algorithm (GA) tech-
niques. The best segmental oscillators of the previous evolutionary stage [3] are
used, and five evolutions invoked.
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An integer value GA is used, with chromosomes of fixed-length strings of 51
genes. Each gene corresponds directly to one parameter of the neural config-
uration. Left-right symmetry is imposed for interconnections which constitute
48 genes (rostral and caudal). Boundaries for these are 1 to 12, a range which
includes the biological prototype values. The sign (excitatory or inhibitory) of
each neuron group is contained in three chromosome units. These are preas-
signed according to the type of connection, and thus not evolved. Connections
from motoneurons are also not generated as they only supply output to muscles.

Starting with a randomly generated initial population, the GA loops through
selection, variation and rejection operations, each generation. Selection involves
a fixed number of parents being chosen according to rank-based probability.
Fittest individuals are therefore selected more often to create offspring. Variation
imposes operations of two-point crossover and mutation on paired chromosomes.
Finally, the worst solutions (denoted by their fitness ranking) are rejected, being
replaced by higher ranked new solutions to maintain a consistent overall pop-
ulation size. GA parameters for evolving segmental oscillators are: population
size (60), no. of children (18), crossover probability (0.5), mutation probability
(0.4) and mutation range (0.2). The given probability rates and ranges describe
the degree to which chromosomes are changed. For instance, each gene in the
chromosome is selected for mutation independently with 40% probability.

Evaluation of the complete CPG is based on neural activity and mechanical
movements of the simulated body. Solutions are rewarded for their ability to
control swimming at various speeds, frequencies of oscillation and lags between
segments. More specifically, controllers should (1) be able to change the oscil-
lation frequency or wavelength of the undulation independently through global
excitation (ge) and extra excitation (ee) levels respectively, (2) generate sta-
ble oscillations in each segment with coordinated phase differences which enable
travelling undulations of the body, and (3) be able to change the speed of swim-
ming by altering either their oscillation frequency or the wavelength of the undu-
lations [5]. To compare results with the biological controller, emphasis is placed
on controllers which can swim with a wavelength corresponding to the length of
the body (i.e. phase lag of 1% per segment). Mathematically, the fitness is de-
fined as: fitness = min fit oscil ∗fit freq control ∗fit lag control ∗fit speed
where min fit oscil denotes the oscillatory activity of the least stable segment
(segments analysed are 1,10,20...100 at the midrange level of global excitation).
If this value is below a threshold of 0.45, oscillatory activity is not satisfactory
and the candidate CPG is tested no further. Details for calculating this criteria
can be found in [3]. The other fitness formula variables are calculated as:

fit lag control = 0.05 + lag range1
1+freq range1 (if < 1), else 1

fit freq control = 0.05 + freq range2
1+lag range2 (if < 1), else 1

fit speed = 0.05 + speed range (if < 1), else 1

To measure lag range1 and freq range1, several simulations are made at
a fixed level of global excitation (the midrange ge value at which the network
oscillates) and with an increasing amount of extra excitation (ee). The lag range
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is non-zero only when the oscillations are regular in all segments and if the lag
increases monotonically with ee. Dividing the lag range by the frequency range
encourages rewarding solutions according to their ability to alter the lag between
segments independently of the frequency.

Freq range2 and lag range2 are measured by making several simulations,
with ge input varying around the midrange level, and this time, with a fixed
amount of ee. This value is calculated from the previous lag measurements if
lag range1 includes a lag of 1%; the ee value corresponding to the lag closest to
1% is used. The frequency range is non-zero only if a lag close to 1% exists, and
if frequency increases monotonically with the level of extra excitation.

Finally, speed range corresponds to the range of speeds covered by all the
simulations made for the definition of fit lag control and fit freq control. The
algorithms for evolving synaptic interconnections are from [5] but applied to
segmental oscillators which evolve neural parameters as well as synaptic weights.

4 Results and Discussion

Results of five experiments demonstrate 80% of the evolved controllers give im-
proved performance over the prototype CPG. Evolutions were terminated after
50 generations since the populations had stabilised by this point and simulation
times were significantly greater for this evolutionary stage. Table 1a compares
statistics of the best evolved solution with Ekeberg’s biological CPG [1] and
Ijspeert et al’s best segmental fixed parameter controller [5]. Corresponding
weights and extensions (rostral and caudal) are given in Table 1b.

a) CPG Fitness Freq. Range Lag Range Speed Range midrange
Value (Hz) (%) (m/s) ge value

Biological 0.2 1.74 - 5.56 0 - 1.165 0.01 - 0.45 0.6
Fixed 0.16 1.2 - 8.0 0.73 - 1.37 0.06 - 0.41 1.2
Best Evol. 0.51 0.99 - 12.67 0 - 1.59 -0.1 - 0.6 0.7
b) Run Synaptic Weights [Rostral, Caudal Extensions] Parameters

from: EINl CINl LINl EINr CINr LINr BS θ Γ μ
to:

Biological EINl 0.4 [2,2] - - - -2.0 [1,10] - 2.0-0.2 1.8 0.3
CINl 3.0 [2,2] - -1.0 [5,5] - -2.0 [1,10] - 7.0 0.5 1.0 0.3
LINl 13.0 [5,5] - - - -1.0 [1,10] - 5.0 8.0 0.5 0
MNl 1.0 [5,5] - - - -2.0 [5,5] - 5.0 0.1 0.3 0

Fixed EINl -0.8 [12,4] -3.8 [12,10] - -0.9 [5,10] -0.7 [1,10] - 0.8-0.2 1.8 0.3
ParameterCINl - - - -3.5 [2,2] -3.7 [9,9] - 13.0 0.5 1.0 0.3

LINl - - - - - - - 8.0 0.5 0
MNl -0.4 [9,2] -3.2 [8,1] - - - - 3.8 0.1 0.3 0

Best EINl - -4.57 [3,4] - - - - 3.06 -1 0.71 0
Evolution CINl 5.53 [1,8] - - - -2.9 [10,1] - -1.18 -1 0.48 0

LINl - - - - - - -5 -1 0 0
MNl - -4.28 [8,6] - - - - 10.83 -1 0.27 0

Table 1: a) Operative ranges of the biological, fixed parameter and best evolved
CPGs, and b) their respective weights [and extent of connections].

Fitness of improved controllers (those with greater objective values than
the biological prototype’s fitness 0.2 and Ijspeert’s fixed parameter controller
(0.16 fitness), range from 0.41 - 0.51. The frequency, lag and speed ranges
of all generated improved solutions are substantially greater than the biological
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controller and Ijspeert’s fixed parameter CPG, with the best evolution operating
at a frequency of 0.99 - 12.67 Hz (compared to 1.74 - 5.56 Hz and 1.2 - 8 Hz),
with lag ranging from 0 - 1.59% (compared to 0 - 1.165% and 0.73 - 1.37%) and
speed of -0.1 - 0.6 m/s (compared with 0.01 - 0.45 m/s and 0.06 - 0.41 m/s).
The lag range is recorded at the midrange ge level, with varying ee and frequency
range corresponds to varying ge levels with no ee as it was considered to provide
a better comparison of operation ranges. It is worth noting that Ijspeert’s best
segmental oscillator did not perform as well as the biological prototype when
coupled into a multisegmental unit, also confirmed by his results [5]. Finally, a
negative speed recording is due to the kind of wriggling the lamprey performs.

5 Conclusion

Experiments evolving Ekeberg style controllers, where neural connections within
a segment are generated, demonstrate that many effective segmental oscillators
can be constructed [3]. Extending these to multisegment CPGs shows improved
performance over the biological prototype [1] and fixed parameter CPGs [5];
evolved networks operate over a wider frequency, phase and speed range with
independency of control. Furthermore the evolved networks are vastly simplified
in terms of connectivity and parameter sets used by Ekeberg. The research also
confirms that many possible solutions exist for anguiliform locomotion within
the structural constraints of Ekeberg’s CPG model.

In summary, we have shown that, by relaxing some of the constraints associ-
ated with a biological exemplar, controllers (and potentially other computational
structures) can be evolved that can capture the strengths of biological “compu-
tation” in a simpler, or perhaps more effective manner. We are developing this
biological paradigm and architecture without the constraints imposed by the
biological computing substrate, to optimise articulated Wave Power Devices.
Early, simple experiments [2] suggest that it can. This forms the basis of a
wider study that aims to develop or evolve other biological “computer” for new
aims and goals, to discover whether the biological substrate upon which they
are implemented is optimal, or a constraint to better performance.
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