
A Gaussian Process Latent Variable Model

formulation of Canonical Correlation Analysis

Gayle Leen1 and Colin Fyfe1

1- School of Computing - University of Paisley
PA1 2BE - Scotland

gayle.leen,colin.fyfe@paisley.ac.uk

Abstract. We investigate a nonparametric model with which to vi-
sualize the relationship between two datasets. We base our model on
Gaussian Process Latent Variable Models (GPLVM)[1],[2], a probabilisti-
cally defined latent variable model which takes the alternative approach
of marginalizing the parameters and optimizing the latent variables; we
optimize a latent variable set for each dataset, which preserves the corre-
lations between the datasets, resulting in a GPLVM formulation of canon-
ical correlation analysis which can be nonlinearised by choice of covariance
function.

1 Introduction

We are often interested in finding the relationship between two datasets. A
way of achieving this is to project each dataset onto a manifold such that the
two projections are maximally correlated. Using a linear projection performs
a canonical correlation analysis (CCA) of the data; in this paper we find a
probabilistic interpretation of CCA that can be nonlinearised by using nonlinear
Gaussian process covariance functions.

2 A latent variable model formulation of CCA

Latent variable models (see e.g. [3] ) are defined by a relationship between a
set of latent variables x = [x1, ...xq]T and a set of data variables y = [y1, ...yD]T

probabilistically, and governed by a set of parameters. We consider a latent
variable model that is based on a linear mapping between x and y with added
Gaussian noise: y = Wx+n1, where n ∼ Nn(0,Ψ), and a prior distribution over
x: p(x) = Nx(0, Iq). For a set of N D-dimensional datapoints Y = {yn}N

n=1,
we obtain the marginal likelihood by integrating over the latent variables and
assuming i.i.d. data:

p(Y | W,Ψ) =
N∏

n=1

∫
p(yn | xn,W,Ψ)p(xn)dxn (1)

=
N∏

n=1

Nyn(0,WWT + Ψ) (2)

1We assume centred data in this paper, but it is easy to introduce a bias µ
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We then find parameter values to maximise the likelihood function in (2) given
the data Y. In [4], canonical correlation analysis [5] is formulated as a latent
variable model. The model is represented by the graphical model in Figure 1(l),
where y1 ∈ �m1 and y2 ∈ �m2 are the two sets of data variables. Both y1 and
y2 are independent given the shared latent variable x. The model is defined as
follows:

x ∼ N(0, Iq), min(m1, m2) ≥ q ≥ 1
y | x ∼ N(Wx + μ,Ψ) (3)

where y =
(

y1
y2

)
, μ =

(
µ1
µ2

)
,W =

(
W1
W2

)
,Ψ =

(
Ψ1 0
0 Ψ2

)
Wi ∈ �mixq,Ψi ∈ �mixmi � 0, i = 1, 2

The maximum likelihood solutions are given by:

Ŵ1 = Σ̃11U1qM1, Ψ̂1 = Σ̃11 − Ŵ1ŴT
1 , μ̂1 = μ̃1 (4)

Ŵ2 = Σ̃22U2qM2, Ψ̂2 = Σ̃22 − Ŵ2ŴT
2 , μ̂2 = μ̃2

where the columns of U1q and U2q are the first q canonical vectors, M1,M2 ∈
�qxq are arbitrary matrices such that M1MT

2 = diag(ρ1, ..., ρq) where ρi is the

ith canonical correlation, and Σ̃ =
(

Σ̃11 Σ̃12
Σ̃21 Σ̃22

)
= E

((
y1
y2

) (
y1
y2

)T
)

Using the
ML estimates for the parameters, the posterior expectation of x given the ith
dataset yi is E(x | yi) = MT

i UT
iq(yi − μ̂i) which lies in the q-dimensional linear

subspace of �mi , the same as that obtained from CCA.

2.1 Extensions to the latent variable model

This formulates the statistical technique of CCA as a probabilistic model with
a log likelihood function given by log p(y | W, Ψ). However, CCA only finds
linearly correlated features between two data sets, and we may want to extract
sets of features that share a more complicated relationship. Since we are working
within a probabilistic framework, we could extend this simple model by nonlin-
earising the mapping or creating a mixture of Probabilistic CCA, following [6].
Instead we take a nonparametric approach, to overcome the limitations of para-
metric models, for which we have to explicitly define the nature of the mapping
from latent to data space.

3 From latent variable models to Gaussian Process Latent
Variable Models (GPLVM)

Whereas it is more common to marginalise the latent variables and find optimal
parameter values to maximise (2), another approach [1] is to marginalise the
parameters and optimize the latent variables. The marginalised likelihood is
given by placing a prior distribution over the parameters 2, and then integrating

2Only W is integrated out in this model
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them out:

p(Y | X,Ψ) =
N∏

n=1

∫
p(yn | xn,W,Ψ)p(W)dW (5)

p(Y | X, β) =
1

(2Π)
DN
2 |K|D

2
exp(−1

2
tr(K−1YYT )) (6)

where K = αXXT +β−1I, p(W) =
∏D

i=1 Nwi(0, α−1ID) where wi is the ith row
of W, and Ψ = βI, following the Probabilistic Principal Component Analysis
(PPCA) model as in [7]. The resulting GPLVM [1], [2] is the product of D inde-
pendent Gaussian processes. The latent coordinate positions X that maximise
the log likelihood function log p(Y | X, β) are given by:

X = UqLVT (7)

where Uq is the N by q (the dimension of the latent space) matrix whose columns
are the first q eigenvectors of YYT , L is a q by q diagonal matrix whose jth
element is lj = ( λi

αD − 1
βα )1/2, λi is the ith eigenvalue of YYT and V is a rota-

tion matrix. This results in a different probabilistic interpretation of principal
component analysis. Note that rather than defining a mapping from latent to
data space, the model creates a distribution over the function space based on
the locations of the latent variables X in the latent space. The mapping from
latent to data space is implicit in the choice of covariance function K.

3.1 A new latent variable model of CCA

To create a GPLVM version of CCA, we could integrate out the mapping pa-
rameter W from the latent variable model of CCA:

p(Y | X,Ψ) =
N∏

n=1

∫
p(yn | xn,W,Ψ)p(W)dW

with p(yn | xn,W,Ψ) from (3), and using p(W) as above (where D = m1+m2).
However, this integral in analytically intractable, due to the block diagonal form
of Ψ. To overcome this problem, we propose a new latent variable model of
CCA (Figure 1(r) and (8). We introduce an intermediate latent variable z =

(
z1
z2

)
.

which is a deterministic transformation of the data y:
(
z1
z2

)
=

(
A

1/2
1 0

0 A
1/2
2

) (
y1
y2

)
The model performs CCA through a probabilistic PCA on the transformed data
variable z. This is motivated by the idea that we can perform CCA through
sphering each data set, and then performing PCA over the two data sets together.

x ∼ N(0, Iq), min(m1, m2) ≥ q ≥ 1
zi | x ∼ N(Vix + μi, βImi), Vi ∈ �mixq, i = 1, 2 (8)

yi | zi ∼ δ(yi − A−1/2
i zi), Ai ∈ �mixmi , i = 1, 2
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Fig. 1: Two graphical models for canonical correlation analysis. Bach and Jor-
dan’s model (left) and our model (right)

where we can rewrite the overall mapping y | x as:

y | x ∼ N(A−1/2Vx, βA−1) (9)

where y =
(

y1

y2

)
,V =

(
V1

V2

)
,A =

(
A1 0
0 A2

)

which has the same form of the original latent variable model of CCA in (3).

3.2 A GPLVM version of CCA

Our new latent variable model of CCA splits the mapping from latent to data
variables into two stages, allowing us to integrate out V which parameterises
the mapping from x to z, where we define: p(V) =

∏D
i=1 Nvi(0, α−1ID) where

vi is the ith row of V, and D = m1 + m2

p(Y | X,A, β) =
N∏

n=1

∫ ∫
p(yn | zn,A)p(zn | xn,V, β)p(V)dVdzn

=
∫

δ(Y − ZA−1/2)
|A|N/2

(2Π)
DN
2 |K|D

2
exp(−1

2
tr(K−1ZZT ))dZ

=
|A|N/2

(2Π)
DN
2 |K|D

2
exp(−1

2
tr(K−1YAYT ))dZ (10)

where Z = {zT
n}N

n=1, Y = {(y1)T
n (y2)T

n}N
n=1, K = αXXT + β−1I. The model

given in (10) is a GPLVM version of CCA. The matrix A introduces cross co-
variance functions between the variables within each data set, similar to W used
in [8] which accounts for different variances in the data dimensions. By account-
ing for the correlations within each data set with the model, X should capture
similarities between the data sets. The log likelihood function for the model is
given by:

l =
N

2
ln|A| − DN

2
ln(2Π) − D

2
ln|K| − 1

2
tr(K−1YAYT ) (11)

We want to find the latent coordinate set Xi, the projection of the data set Yi,
back into the latent space where i = 1, ..., 2. We note that to find X which
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underlies both Y1 and Y2, we have to find X that satisfies ∂L
∂K

∂K
∂X = 0 which is

also satisfied by solving ∂K
∂X = 0, at which the covariance function K is given by:

K =
YAYT

D
=

m1

D

Y1A1YT
1

m1
+

m2

D

Y2A2YT
2

m2
=

m1

D
K1 +

m2

D
K2 (12)

which is the weighted sum of Ki’s where Ki is the covariance function when
we are only considering data set Yi and ∂L

∂Xi
= 0. This relates X1, X2, and X

through their covariance functions, which allows us to calculate Xi from:

Xi = UiqLiVT (13)

where Uiq is the N by q matrix whose columns are the first q eigenvectors of
YiAiYT

i , Li is a q by q diagonal matrix whose jth element is lj = ( λi

αmi
− 1

βα )1/2,
λi is the ith eigenvalue of YiAiYT

i and V is a rotation matrix. We then calculate
K from (12), and find A to maximise (11) from:

A = N(YT K−1Y)−1 (14)

which we then constrain to be of block diagonal form. The other parameters are
found by using gradient descent to optimise the log likelihood.

4 Testing the model on a toy dataset

Figure 2 shows a toy data set which comprises two subsets Y1 (2-dimensional)
and Y2 (1-dimensional). We want to find projections for each subset in latent
space such that they are maximally correlated. We can see that y12 exhibits
a strong correlation with y21 whereas y11 is independent of y21; therefore the
optimal projection for Y1 would be to project onto y12. Figure 3 (l) shows X2
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Fig. 2: A toy data set of two data set variables y1 = [y11, y12]T and y2 = [y21]T .
y12 and y21 are linearly correlated (far right).

against X1, the projections of Y2 and Y1 onto their respective first principal
component directions. Y1 is projected onto y11, capturing the multimodal rela-
tionship within Y1. Figure 3(r) shows our model from (10) trained on the data;
it finds 2 sets of linearly correlated 1-dimensional latent coordinates X1 and X2

for the respective datasets.
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Fig. 3: The latent coordinate positions X2 vs X1 using the original GPLVM
which uses a PCA projection (l), and using our model in (10)(r)

5 Conclusions and future work

We extended the latent variable model of CCA by a nonparametric approach,
and created a GPLVM version of CCA where the mapping is implicit in the
choice of covariance function, avoiding the problems associated with parametric
modelling. As opposed to Kernel CCA [9], for which a model is not defined, we
have a probabilistic model of nonlinear CCA, which is a powerful approach, since
we have the benefits of a likelihood function and can select suitable nonlinear
functions within a probabilistic framework. Our future work includes incorpo-
rating nonlinear covariance functions into the model, and testing it on large and
real data sets.
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