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Abstract. Support Vector Machines (SVM) for classification are be-
ing paid special attention in a number of practical applications. When
using nonlinear Mercer kernels, the mapping of the input space to a high-
dimensional feature space makes the input feature selection a difficult task
to be addressed. In this paper, we propose the use of nonparametric boot-
strap resampling technique to provide with a statistical, distribution inde-
pendent, criterion for input space feature selection. The confidence interval
of the difference of error probability between the complete input space and
a reduced-in-one-variable input space, is estimated via bootstrap resam-
pling. Hence, a backward variable elimination procedure can be stated,
by removing one variable at each step according to its associated confi-
dence interval. A practical example application to early stage detection
of cardiac Ventricular Fibrillation (VF) is presented. Basing on a previ-
ous nonlinear analysis based on temporal and spectral VF parameters, we
use the SVM with Gaussian kernel and bootstrap resampling to provide
with the minimum input space feature set that still holds the classification
performance of the complete data. The use of bootstrap resampling is a
powerful input feature selection procedure for SVM classifiers.

1 Introduction

Support Vector Machines (SVM) are efficient learning schemes [1], which have
been paid special attention during the last years. The SVM classification algo-
rithm has shown an excellent performance in a number of practical applications
[2], in terms of minimal classification error probability. In particular, SVM are
robust when working with high-dimensional input spaces, such as images or gene
expressions [3]. In some applications, not only the best classification is required,
but also the quantification of the relative relevance of each of the input space
features, as well as the determination of the most reduced set of variables with
non-redundant information, is needed. In classical statistics, this twofold task
is addressed by linear (and the nonlinear versions) discriminant analysis [4].
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Several Mercer kernel based versions of linear discriminant analysis have been
proposed, such as Fisher discriminant analysis or nonlinear discriminant analysis
with kernels [5, 6], which make a discriminant analysis in a reproducing kernel
Hilbert space, but often, these approaches do not take into consideration the
input space feature reduction stage. Also, a number of procedures have been
proposed for input space feature selection in nonlinear SVM classifiers [7], but
these methods do not provide with a clear cut-off statistical test.

An advantage of SVM classifiers is its nonparametric nature. Given that
their optimizing criterion is the maximum margin in the separating hyperplane,
they are not sensitive to the input space feature statistical distribution. Accord-
ing to this property, the use of the (nonparametric version of the) Bootstrap
Resampling (BR) [8] for creating sequential procedures of input space variable
selection, in connection with SVM classifiers, is an interesting issue. In [9], BR
is proposed for tuning the optimal SVM free parameters in reduced data sets. In
[10], BR is proposed and tested for comparing the relevance of disjoint subsets
of the input feature space. Here, we extend and complete the previous devel-
opment by proposing the use of BR to provide with a Backward Input Space
Selection Procedure (BISSP) based on bootstrap Confidence Intervals (CI). The
statistical criterion to be used in here is the difference in Error Probability (Pe)
between: (1) the complete model, and (2) a reduced model that only considers a
subset of the input space features. This approach lies in eliminating one by one
the irrelevant features of the input space, until a subset of only-significant input
variables is present. This will ensure that the performance of the final SVM
classifier is not significantly different from the complete model trained classifier.
The BISSP is tested in a toy example, and then, it is applied to an automatic
cardiac Ventricular Fibrillation (VF) detector scheme, presented in [10].

The paper is organized as follows. In the next section, the SVM is briefly
revised. Then, the BR-SVM BISSP is presented. Section 4 contains the toy ex-
ample, and Section 5 introduces the VF discrimination problem and the obtained
results. Finally, conclusions are drawn.

2 SVM Classifiers

SVM binary classifier is a sampled-based statistical learning algorithm based on
constructing maximum margin separating hyperplanes in a reproducing kernel
Hilbert space. A detailed description of SVM can be found, for instance, in [1].

Be V a set of N observed and labeled data, V =
{

(x1, y1) , . . . , (xN , yN )
}
,

where xi ∈ R
n and yi ∈ {−1, +1}. Be φ(xi) a nonlinear transformation to a

(generally unknown) higher dimensional space R
B, where a separating hyper-

plane is given by (φ(xi) · w) + b = 0. We know that K(xi,xj) = (φ(xi) · φ(xj))
is a Mercer’s kernel, which allows us to calculate the dot product of pairs of
vectors transformed by φ(xi) without explicitly knowing the nonlinear mapping.
Two often used kernels are the linear, given by K(xi,xj) = (xi · xj), and the
Gaussian, given by K(xi,xj) = exp

{ − ‖xi−xj‖2

2σ2

}
.
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Under these conditions, the problem is to minimize

1
2
‖w‖2 + C

N∑

i=1

ξi (1)

with respect to w, b, and ξi, and constrained to yi

{
(φ(xi) · w) + b

}− 1 + ξi ≥ 0
and to ξi ≥ 0, for i = 1, . . . , N , where ξi represent the losses; C represents a
trade-off between margin and losses; and (·) expresses the dot product. By using
the Lagrange Theorem, (1) can be rewritten into its dual form, and then, the
problem consists of maximizing

N∑

i=1

αi − 1
2

N∑

i,j=1

αiyiαjyjK(xi,xj) (2)

constrained to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0, where αi are the Lagrange
multipliers corresponding to primal constrains. Gaussian kernel width σ, and
parameter C, are free parameters that have to be previously settled. Methods
such as cross-validation or bootstrap resampling can be used for this purpose.

3 Bootstrap Feature Selection

In [10], a BR based method for feature selection is proposed, which is here briefly
presented according to the principles in [9]. A dependence estimation process
between pairs of data in a classification problem, where the data are drawn from
a joint distribution p(x, y) → V, can be solved using a SVM. The estimated SVM
coefficients with the whole data set are α = [α1, . . . , αN ] = s (V, C, σ), where
s() is the operator that accounts for the SVM optimization, and it depends on
the data (V) and on the values of C and σ. The empirical risk for the current
coefficients is defined as the training error fraction of the machine, Remp =
t (α,V), where t() is the operator that represents the empirical risk estimation.

A bootstrap resample is a new data set obtained from the training set accord-
ing to the empirical distribution, i.e., it consists of sampling with replacement
the observed pairs of data: p̂(x, y) → V∗ =

{
(x∗

1, y
∗
1) , . . . , (x∗

N , y∗
N )

}

Therefore, V∗ contains elements of V appearing zero, one, or several times.
The resampling process is repeated b = 1, . . . , B times. A partition of V in
terms of resample V(b)∗ is V = (V∗

in(b),V∗
out(b)), where V∗

in(b) is the subset
of samples included in resample b, and V∗

out(b) is the subset of non-included
samples. SVM coefficients for each resample are given by α∗ = s (V∗

in(b), C, σ).
The actual risk estimation for the resample is known as its bootstrap replicate,
and can be obtained by taking R∗(b) = t (α∗,V∗

out(b)). Therefore, its normalized
histogram for the B resamples approximates the empirical risk density function.
A proper choice for B is typically from 50 to 300 resamples.

Now we consider a reduced version of the observed data (Wu), in which the
uth variable is removed in all the available observations. If we perform a parallel
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resampling procedure according to the complete set resampling,

p̂(x, y) → W∗
u =

{
(x∗

1, y
∗
1) , . . . , (x∗

N , y∗
N)|uremoved

}
(3)

then the bootstrap replication of the actual risk in the incomplete model can be
obtained as R∗

u(b) = t (α∗,W∗
out(b)), so the statistic �R∗(b) = R∗

u(b) − R∗(b)
can be replicated at each resample, and it represents an estimate of the loss in
actual risk in the uncomplete model. For a set of variables U = {u1, . . . , ur},
this statistic also represents the estimated loss due to the information in the
removed variables. An adequate risk measurement in a classification task is the
classification error probability (P ∗

e (b)).
Note that complex interactions among the input variables can be expected

whenever a nonlinear model is built, such as collinearity (for the nonlinear case,
co-information or redundant information), irrelevant or noisy variables, and sub-
sets of variables being relevant only when interacting among them. These situa-
tion have been widely studied in the discriminant analysis literature. With this
BR approach, there is not a statistic associated to the CI, but still it is possible
to propose a backward procedure. In order to eliminate one variable at each
step, we can remove the variable either with the widest or with the smallest CI
overlapping zero. The procedure for variable selection, then, is as follows:

1. Start with all the input variables. Calculate the B resamples and their
corresponding actual risk minimization for (a) the complete input space
P ∗

e (b) and (b) the incomplete model P ∗
e,u(b).

2. Compute the statistic �P ∗
e (b) = P ∗

e,u(b) − P ∗
e (b) and find the 95% CI.

3. If there is any variable with CI overlapping 0:

• remove the variable with wider CI overlapping 0, or

• remove the variable with smaller CI overlapping 0.

4. Finish whenever every variable has a not zero-overlapping CI.

It should be noted that after fixing σ and C by using a cross-validation tech-
nique (N-fold,N = 5), SVM is retrained for every reduced model resampling.

4 Toy Example

The first experiment deals with feature selection problem for a synthetic set of
data. This set consists of eight features (x1,x2, . . . ,x8), in which the first two
variables define an XOR problem (and consequently they label the problem)
with N(0, 1). From x3 to x5 different noisy variables are introduced (Gaussian
N(0, 2), Uniform U(0, 1) and Rayleigh R(1) noise, respectively). Collinearity is
introduced with x6 = x1 + 3x2 + N(0, 2) and x7 = x1 − x2 + N(0, 2) , while
x8 = (x1)2 · (x2)2 implements a nonlinear combination of these variables.

We test our BISSP for this data set, using B = 50 resamples and applying
the two criteria, i.e, wider CI and smaller CI. Better results, in terms of Pe, are
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obtained in the case of wider CI, as can be seen in Table 1. Figure 1 represents
the error probability statistic (�P ∗

e ) histograms of the variablesx1, x2, x7 in 3
different steps of the BISSP (wider CI criterion). As the procedure evolves, the
relevance of the variables to be selected increases, so the the statistic becomes
larger and positive. Non zero-overlapping variables, like x7, whose statistic result
in a “negative” histogram are eliminated, since they are even increasing the Pe.

Criterion Pe (Complete model) Pe (Reduced model) Selected Variables
Wider CI 0.05|0.06 0.05|0.04 x1, x2

Smaller CI 0.05|0.07 0.08|0.07 x1, x6

Table 1: BISSP criteria comparison (TRAIN | TEST )
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Fig. 1: �Pe
∗ histograms of the variables x1 (blue), x2 (red) and x7 (green).

5 VF Feature Selection

The second experiment presents a direct application of the problem of feature
selection. In [11], 29 records from AHA and MIT/BIH databases were char-
acterized by 27 time(t), frequency(f) and time-frequency(tf) parameters. We
presented in [10] a BR technique for selecting a set of variables (time, frequency
or time-frequency) that better discriminate VF. Here, we extend this approach
to the BISSP previously described. Table 2 shows the mean values and the CI
of �P ∗

e (%) for the selected variables after the BISSP. For the completed input
space Pe = 0.02, while for the reduced data set Pe = 0.07. It is remarkable
that the error probability for the excluded variables resulted to be Pe = 0.06,
showing that this problem contains a lot of redundant information. However,
the selected input space ensures a good performance of the FV detection while
keeping a smaller dimensionality.
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Selected Variable �P∗
e(%)

curve (f) 2.28 [1.17|3.66]
qtel (f) 1.85 [0.89|3.42]

maximfreq (f) 1.80 [0.84|3.71]
tmy (tf) 1.65 [0.43|3.09]
mdl8 (t) 1.61 [0.51|2.36]
ct8 (t) 1.60 [0.51|2.72]

dispersion (tf) 1.42 [0.28|2.73]
area (tf) 1.38 [0.47|2.61]
tsnz (tf) 1.30 [0.37|2.40]

pmxfreq (f) 1.22 [0.05|2.08]
minfreq (f) 1.17 [0.14|2.13]

Table 2: Mean �P ∗
e (%) and CI for the selected variables.

6 Conclusions

In this study we have presented a novel feature selection procedure by using BR
techniques for SVM classifiers. The reduced selected input space provides with
a good performance of the detector, while reducing the dimensionality.
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