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Abstract. The EENCL algorithm [1] automatically designs neural net-
work ensembles for classification, combining global evolution with local
search based on gradient descent. Two mechanisms encourage diversity:
Negative Correlation Learning (NCL) and implicit fitness sharing. This
paper analyses EENCL, finding that NCL is not an essential component of
the algorithm, while implicit fitness sharing is. Furthermore, we find that
a local search based on independent training is equally effective in both
accuracy and diversity. We propose that NCL is unnecessary in EENCL
for the tested datasets, and that complementary diversity in local search
and global evolution may lead to better ensembles.

1 Introduction

One approach to the design of accurate and diverse ensembles is the EENCL algo-
rithm (Evolutionary Ensembles with Negative Correlation Learning) [1]. Unlike
many other ensemble methods, the individual networks are trained in parallel,
rather than independently or sequentially. Individual networks learn by Neg-
ative Correlation Learning (NCL) [2] and evolutionary learning [3]. Diversity
amongst the final population is encouraged by the negative correlation of the
networks’ outputs and through speciation by implicit fitness sharing [4][5]. Both
accuracy and diversity are important for the creation of good ensembles.

EENCL [1] proved successful on some problems. However, little work has
been carried out to analyse why EENCL is effective. Specifically we are inter-
ested in what contribution NCL makes to the performance of the algorithm,
since it introduces an extra parameter and additional complexity. This paper
uses additional datasets to analyse how the two learning mechanisms of global
evolution and local search interact. Surprisingly, we find that NCL is not an
essential component of EENCL for the datasets tested, and that a comparable
performance can be achieved with a much simpler local search technique: Back-
propagation. Our experiments show that by replacing NCL in EENCL with
Backpropagation, we can achieve comparable classification accuracies, and also
produce ensembles that are just as diverse in terms of the joint correct sets of
the networks and also in terms of correlation of outputs. We suggest that the
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diversity creation in local search provided by NCL based on correlation is un-
necessary for these datasets. The fitness sharing stage of the algorithm enforces
diversity in terms of a coverage of training patterns, which is not complementary
to the diversity creation in the evolutionary stage. Most significantly, it may also
be possible to create better ensembles if we design the local search and global
evolution to work effectively together.

NCL was first proposed by Liu and Yao [6] as a means to generate an ensemble
of neural networks, whose outputs would be negatively correlated. The networks
are trained simultaneously and a penalty term is included during training to
encourage the formation of decorrelated networks. Backpropagation is used to
train the network but the error to be minimised is now [7]:

Ei (n) =
1
N

N∑
n=1

[
1
2

(d (n) − Fi (n))2 + λpi (n)
]

, (1)

where N is number of training patterns, Ei (n) is the error of network i on
training pattern n, d (n) is the target output, Fi (n) is the output of network i,
λ is the strength of penalty parameter and pi (n) is the penalty term, defined as:

pi (n) = (Fi (n) − d (n))
∑
j �=i

(Fj (n) − d (n)) . (2)

Evolutionary learning can benefit from combining a final population into
an ensemble rather than selecting the ‘best’ individual [8]. Populations tend
to converge towards similar solutions, as successful genetic material is re-used
to form offspring. In contrast, ensembles are effective when their members are
both accurate and diverse [1][2][7][9]. Speciation through fitness sharing creates
a diverse set of solutions to exploit different niches in the fitness landscape
[4][5]. Raw fitness scores are shared amongst similar individuals. The definition
of similarity and the mechanism for sharing varies, here similar individuals are
those which make the same correct classifications, and the reward for the correct
classification is shared equally amongst all those individuals judged to be similar.

The rest of this paper is organised as follows: section 2 describes the EENCL
algorithm; section 3 describes the experiments with local search techniques and
our results; section 4 concludes and indicates possible further work.

2 EENCL Algorithm

EENCL uses partial training with the Negative Correlation Learning (NCL)
algorithm alongside an evolutionary process to form a population of neural net-
works suitable for combination into an ensemble [1]. EENCL exploits two mech-
anisms to ensure that the final networks are both accurate and diverse. Firstly,
NCL encourages the negative correlation of the outputs of the networks in the
population. Secondly the fitness of individuals in the population is evaluated
with implicit fitness sharing [10] based on the coverage of patterns in the train-
ing set. Either the entire final population is used to form the ensemble or some
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subset. In all of the experiments in this paper the entire final population is
used. The outputs of the individual networks are combined by either a simple
average, majority vote or a winner-takes-all procedure. The algorithm proceeds
according to the following steps [1]:

1. An initial population (M) is trained for a small number of epochs (ne) according to the
NCL algorithm.

2. nb parents are randomly selected from M , according to a uniform distribution.

3. nb parents’ weights are mutated, by Gaussian mutation N(0,1) to form nb offspring.

4. nb offspring are added to population and trained for e epochs, holding the weights of
M fixed.

5. Fitness of all M + nb individuals evaluated using a fitness sharing scheme based on the
coverage of training patterns.

6. Fittest M from current population M + nb selected for next generation.

7. If total number of generations reached, go to step 8, otherwise go to 2.

8. Combine the population into an ensemble.

3 Experiments with local search technique

Liu and Yao [1] showed that the combination of evolution with fitness-sharing
and NCL could produce competitive results in comparison to a number of other
classification techniques. It is less clear to what extent these different learning
mechanisms are responsible for this performance. We sought to establish whether
NCL was a necessary component of the EENCL algorithm, or if similar results
could be obtained by means of an alternative (and less complex) local search.

We applied the EENCL algorithm to four datasets (Australian Credit Card,
Pima Indian Diabetes, Heart Disease and Wisconsin Breast Cancer) over 30
independent runs. All of these datasets are available by anonymous ftp from the
UCI Machine Learning Repository at ics.uci.edu (128.195.1.1) in /pub/machine-
learning-databases. Each set was equally divided into a training, validation and
testing set. The validation set is not used in these experiments. Each network
learns the same training set. The results of 30 runs on the test set are averaged to
approximate the generalisation error of the resulting ensembles. Three different
combination schemes are tested: a simple average, majority vote and winner-
takes-all. In each case the classification accuracy is shown in table 1.

Here we also define a new algorithm, EE-Backprop. This algorithm is identi-
cal to EENCL, except that NCL is no longer used as the local search technique
in steps 1 and 4 of the algorithm. In EE-Backprop, the penalty strength, λ,
is set to 0. As can be seen in equation 1, the right-hand-side now disappears
and we are left with a conventional mean-square-error. Hence, EENCL with a
penalty of 0, is equivalent to using conventional Backpropagation for the local
search. In all other ways, EE-Backprop is identical to EENCL and is also used
with the same set of parameters, as detailed in section 3.1.

3.1 Experimental Setup

The EENCL algorithm was implemented as described by Liu and Yao [1]. The
initial population is a set of randomly initialised MLP’s with full connection and
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Dataset Algorithm Average Majority Winner

Australian
EENCL 0.876 0.873 0.867

EE-Backprop 0.873 0.870 0.868

Breast Cancer
EENCL 0.972 0.972 0.973

EE-Backprop 0.972 0.972 0.972

Diabetes
EENCL 0.766 0.764 0.762

EE-Backprop 0.763 0.764 0.757

Heart Disease
EENCL 0.789 0.785 0.772

EE-Backprop 0.793 0.793 0.772

Table 1: Testing classification accuracies for the EENCL and EE-Backprop algorithms
over four datasets, with three combination schemes. No statistically significant differ-
ence between the algorithms is found, using a Student t-test with a confidence of 1%.

a single hidden layer. Output nodes are encoded using a 1-of-c scheme and all
nodes are sigmoidal logistic. The node with the highest output is considered to
be the classification of the network. The initial population M is set to 25, and
the number of offspring per generation, nb, is 2. The population is allowed to
evolve for 200 generations. Both the initial population and offspring are trained
for 5 epochs, ne. The learning rate is set to 0.1 and the networks are trained
using mean-square-error. For EENCL the NCL penalty term λ is set at 0.75.
For EE-Backprop λ is 0. This is identical to the experimental setup described
by Liu, arrived at in the original study after limited experimentation [1].

3.2 Classification accuracies for EENCL and EE-Backprop

The classification accuracies for EENCL and EE-Backprop are shown in table 1.
Interestingly, no statistically significant difference between the techniques could
be found, using a Student t-test with a 1% confidence interval. EENCL was
found to be most effective with the winner-takes-all combination scheme over
the Australian and Diabetes datasets in Liu’s experiments [1]. Unlike Liu, we
do not observe that EENCL is more suited to the winner-takes-all combination
scheme for all problems (only in the Diabetes problem is the accuracy highest).
This may be because winner-takes-all works well with specialised networks, and
our ensembles have been trained on a smaller proportion of the datasets than
Liu’s, and therefore had less opportunity to specialise.

EE-Backprop is a simpler algorithm: each network learns independently and
does not require the setting of a penalty strength parameter. However, it is
just as effective as EENCL in terms of classification accuracy, so it is difficult to
justify the added complexity of NCL. NCL alone is able to significantly improve
on Backpropagation and many other algorithms [7] but it appears that when used
in conjunction with fitness sharing in an evolved ensemble, NCL’s effectiveness
is no longer apparent.
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Dataset Algorithm Ωi σ Ω∀i σ

Australian
EENCL 195.16 5.90 138.80 15.52

EE-Backprop 195.11 5.77 139.20 11.16

Breast Cancer
EENCL 225.98 1.40 219.07 3.69

EE-Backprop 225.98 1.59 218.10 4.77

Diabetes
EENCL 183.07 6.91 86.33 14.49

EE-Backprop 182.32 8.31 81.57 25.12

Heart Disease
EENCL 66.75 11.01 29.67 3.75

EE-Backprop 66.73 4.40 26.10 4.36

Table 2: Correct response sets for EENCL and EE-Backprop across 4 datsets. Ωi is
the mean individual correct response set over 30 runs. Ω∀i is the mean joint correct
repsonse. σ is the standard deviation. No significant difference was found using a
Student t-tests with a 1% confidence interval, except for Ω∀i for the Heart Disease
problem, where EE-Backprop is significantly lower.

3.3 Diversity analysis for EENCL and EE-Backprop

One method to analyse diversity in the final ensemble is to compare their correct
response sets [7]. Here we define the correct response set of a network i, Ωi, as the
set of examples it correctly classifies. We also define the joint correct response
set between networks i and j, Ωi,j , as the set of examples that both networks
classify correctly. Table 2 shows the mean individual correct response sets, Ωi,
and the mean joint correct response sets for all networks in the final population,
Ω∀i, over 30 runs for both EENCL and EE-Backprop. Liu found that NCL
produced significantly lower joint correct response sets to independent training
with Backpropagation [7]. Our results show that this is not the case for EENCL
and EE-Backprop, where no significant difference could be found in Ω∀i except
for the Heart Disease set, where Ω∀i is significantly lower for EE-Backprop.

We also measured the average pair-wise correlation between the networks
in each ensemble. For the Australian Credit Card and Breast Cancer datasets,
EENCL reduced correlation to a greater degree than EE-Backprop as expected.
This was expected because EENCL explicitly seeks to minimise correlation,
whereas EE-Backprop seeks only to minimise error during local search. The
other datasets however provided counter-intuitive results, with EENCL creating
more highly correlated ensembles. One possible explanation for these unexpected
results is that they are a consequence of using two different ways of encouraging
diversity. EENCL can only effectively de-correlate the networks if the offspring
that are trained are fit enough to survive, otherwise the offspring will be dis-
carded. In EENCL fitness is awarded according to accuracy and also coverage
of training patterns, which is not necessarily the same as correlation of outputs.
NCL warps the mean-square-error landscape, and then descends this new land-
scape [9]. Fitness sharing however, operates on a different landscape: a warping
of the classification accuracy landscape, according to the coverage of training
patterns amongst the ensemble.
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4 Conclusions and Future Work

Our analysis shows that NCL is not integral to the success of the EENCL al-
gorithm for these datasets, whereas implicit fitness sharing is. We have demon-
strated that EE-Backprop produces comparable classification accuracies. Like-
wise we find that both techniques produce similar joint response sets, showing
that EENCL is no more effective in producing specialisation within the ensemble.
We obtained surprising results which show that on some problems, EE-Backprop
was able to produce lower correlation amongst the ensemble than EENCL, but
that this did not necessarily translate into improved classification accuracy. We
hypothesise that the explanation for how a method which explicitly seeks to
reduce correlation such as EENCL can produce higher correlated networks than
EE-Backprop, which only implicitly reduces correlation, is to be found in the dif-
ferent and not necessarily complementary representations of diversity in EENCL.
EENCL also requires the setting of a penalty strength parameter, which does not
significantly improve performance over EE-Backprop. We propose that better
results could be achieved if both local search and global evolution had com-
plementary implementations of diversity, (e.g. both based on the coverage of
training patterns or on correlation of outputs). Further experiments with com-
plementary diversity are necessary to determine if such an approach will lead to
better ensembles. Effective local search becomes increasingly important as the
dataset grows, so larger problems may also aid the comparison.
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