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Abstract. We propose a new training algorithm for radial basis function
networks (RBFN), which incorporates both generative (mixture-based)
and discriminative (logistic) criteria. Our algorithm incorporates steps
from the classical expectation-maximization algorithm for mixtures of Gaus-
sians with a logistic regression step to update (in a discriminative way)
the output weights. We also describe an incremental version of the al-
gorithm, which is robust regarding initial conditions. Comparison of our
approach with existing training algorithms, on (both synthetic and real)
binary classification problems, shows that it achieves better performance.

1 Introduction

1.1 Basics of RBFN

RBFN are widely used for classification and regression problems. Since their
introduction, several architectures and training algorithms have been proposed.
An RBFN consists of an input layer, a hidden layer containing the radial
basis functions, and an output layer which performs the weighted sum of the
values from the hidden layer. Each output y; of a (linear) RBFN is given by

k

v = 9%) = B + 3 By Gllx — 1), 1
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where x = [z1,...,2,]7 is the network input, 8;;, for j = 1,...,k, is the weight
between the j-th hidden neuron and the i-th output neuron, ;o is the bias of the
i-th output, || - || denotes some norm, t; = [t;1,...,¢j,]7 is the center of the j-th
RBF, and G(a) = exp(—a?/2) is (usually) a Gauss function. Standard RBFN
use the Euclidean norm, ||x —t;|| = ||x — t;]|2, while elliptical basis function
networks (EBFN) use Mahalanobis distances [1], based on “covariance-type”

matrices [|lx — & = [|x = t;]lc, = ((x — £;)7C; ' (x = t;))3.

1.2 RBFN Training Algorithms

Early algorithms were two-stage procedures [2]: the first stage learns the hidden
layer (the centers, and maybe the covariance matrices), while the second stage
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sets the output weights. One of the most popular algorithms is the so-called self-
organized selection of centers [2], which is based on K-means clustering [2, 3] on
the first stage, followed by least squares (LS) adjustment of the output weights
[2, 4]. The use of regression and decision trees is considered in [5] and [6], still in
two-phase approaches. In [7], an expectation-maximization (EM) algorithm is
used to learn some of the parameters of a regularized RBFN; however, this EM
algorithm does not obtain the RBF widths and is only used for regression. Other
approaches combining EM with regression trees are considered in [8], still only
for regression problems. A two-stage approach for EBFN training is proposed
in [1]: an EM algorithm estimates the centers and covariance matrices, followed
by LS estimation of the output weights.

A global EM algorithm (which learns all the network parameters, including
arbitrary “covariance” matrices) was proposed in [9], but only for regression
problems. In [10], the basis functions are seen as probability densities and the
weights as prior probabilities; global training is carried out by an EM algorithm
which estimates the class-conditional densities. For the regression case, other
global approaches, interpretations, and learning strategies can be found in [11].
General purpose optimization tools for non-convex problems (such as genetic
algorithms and simulated annealing) have also been used for RBFN training.

1.3 Proposed Approach

In this paper, we propose a global EM-type algorithm to train an RBFN for
classification; although extension to multi-class is trivial, we focus on the binary
case. For classification purposes, we use a logistic RBFN obtained by applying
a logistic function to the output of a linear RBFN with one output (see (1)).
The output of the logistic RBFN is seen as the probability of class 1, given the
input x, that is,

. -1
P(y = 1|x) = logistic(g(x)) = {1 +exp | —fo — Zﬂj G(llx —t;llc;) J ‘

We propose to use the EM algorithm to learn the hidden layer parameters (t;
and C;), while simultaneously updating the output layer weights (3;) by using
logistic regression (LR).

This paper is organized as follows. Section 2 presents the proposed global
training approach. Some results on synthetic and real binary classification prob-
lems are shown in Section 3. Finally, Section 4 presents some conclusions.

2 The Proposed Global Training Algorithms

The training set consists of N labelled data points, {(x1,¥y1), ..., (Xn,yn)}, where
x; € IR™ and y; € {0,1}. The goal is to obtain all the parameters of the
network: the centers t; and covariances Cj, for j = 1,...,k, and the output

weights 8 = [Bo, .., ]
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By using normalized Gaussian basis functions, we can interpret the linear
part of the RBFN as a mixture of Gaussians g(x) = 8o + Zle Bi N (x|t;, Ci).
This clearly suggests using an EM algorithm for learning the means and covari-
ances of the Gaussian basis functions. In each iteration of this EM algorithm,
we simultaneously adjust the weights §; of the output layer by logistic regres-
sion [12]. Notice that this algorithm can be seen as using a generative criterion
for estimating the means and covariances, and a discriminative criterion for the
output weights [13]. Formally, the algorithm is as follows:

a, N(xilts, Cy)

- yfori=1,...,N,and s=1,..., k.
> 6, N(xilt,, Cr)
r=1

Step 1: Compute z{ =

Step 2: Update weight estimates a,; see text for details.

Step 3: Update the centers and covariances: for s = 1, ..., k,

~ —1
t, = (Ziil X le) (Zzlil le) ;

~ ~ ~1
Co = (SN 6 — 8) i = 8)720) (S, 2¢)
Step 4: Update weights: B8 «+ B+ (XTWX)~!'XT(y — p).
Step 5: Check some stopping criterion; if not met, go back to Step 1.

The steps of the algorithm require some explanations:
e Steps 1 and 3 are standard E and M steps of EM for Gaussian mixtures.

¢ In step 2, we can use one of two options: (a) a; = \Bs\(Zle |8;))~1, which
links the mixture weights to the output weights obtained by LR; (b) the
standard update rule of EM for mixtures, a;, = (1/N)}_, 27, with no
link between the output weights obtained by LR and the mixture weights.
These two versions are called EM-LR-Link and EM-LR, respectively.

e Step 4 is a standard Newton-Raphson step for LR (see, e.g., [12]); y is
a N x 1 vector holding the class labels; X is the N x (k + 1) so-called
design matriz, that is, X;; = N(Xiﬁ:\j, éj), with the exception of the first
row which is filled with ones; p is a N x 1 vector, with element p; =
logistic(g(xi))(1 — g(x;)); finally, following the approach in [14], we use
W = 0.25 Iy (where Iy denotes the N x N identity matrix).

e The stopping criterion can be a maximum number of iterations, a target
error rate on the training set, or some other rule.

Initialization is done by randomly placing the centers, taking identity covari-
ances, as = 1/k, and B = 0. We have also considered a third version of the
algorithm, named EM-LR-Link-K, which starts with & = 1, and increases this
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number along the algorithm, after every A iterations, until the maximum value
kps is reached. This version, by starting with only one Gaussian, is much less
sensitive to initialization, a critical aspect of most RBFN training algorithms.

3 Results

We compare our algorithms with some two-stage algorithms: K-means followed
by LS (KMeans+LS); EM estimation of centers and covariances followed by
LS weight estimation (EM+LS), as proposed in [1]; EM estimation of centers
and covariances followed by LR weight estimation (EM+LR). Using the same
network topology, the K-means and EM algorithms start with the same initial
conditions. We evaluate generalization ability of the obtained networks (in terms

of classification error rates) using test sets.

3.1 Synthetic Data

We generate a bivariate (n = 2) data set with 100 training and 200 test points.
Fig. 1 shows the test set results, after 15 iterations, for a network with k& = 6.
The EM-LR-Link algorithm leads to zero errors, while KMeans+LS produces 21
errors. Notice the ellipsoidal probability level curves obtained by our algorithm,
due to the use of full covariances. The 0.5 level curve is the decision boundary
in the case of equal misclassification loss.

Test KMeans+LS - 21 errors 10.5 % Test EM-LR-Link - 0 errors 0.0 %

¥

+£

05

Fig. 1. Classification results obtained by KMeans+LS and our EM-LR-Link
algorithm, on synthetic data. Note: the figures are best seen on color.

3.2 Benchmark Datasets

Results on the well-known Ripley dataset (for which the Bayes error rate is
known to be 8%), with k = 7, are shown in Fig. 2. The two-stage algorithms
(EM+LS and EM+LR) achieve the same error rate as EM-LR (11.1 %), while
EM-LR-Link performs better (10.1 %). Fig. 3 (left plot) shows the evolution of
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Test EM-LR - 111 errors 11.1 % Test EM-LR-Link - 101 errors 10.1 %

Fig. 2: Comparison of EM-LR and EM-LR-Link, on the Ripley dataset.

the train and test error rates of the EM-LR-Link-K algorithm, for the Ripley
dataset, showing that it achieves a test error rate of 8.7%, close the Bayes optimal
of 8%. The algorithm was run with A = 2 and ky; = 15. Also in Fig. 3 (right
hand side), we show a similar plot for the Crabs dataset, which contains 80
training and 120 test points, in 5 dimensions (n = 5); we have used A = 3 and
ky =1

Ripley Dataset - Train and Test Set Error Rate - EM-LR-Link-K Crabs Dataset - Train and Test Set Error Rate — EM-LR-Link-K
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Fig. 3: Train and test set error rates, for the Ripley and Crabs datasets, along
the iterations (epochs) of EM-LR-Link-K.

4 Conclusions

We have presented a global training algorithm for RBFN, combining discrimina-
tive and generative criteria. We have proposed three algorithms, integrating EM
with logistic regression. One of these algorithms is incremental in the number
of hidden neurons, thus much less sensitive to the initial conditions. A compar-
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ison between the proposed algorithms and the conventional two-stage training
schemes was carried out for binary classification on synthetic and real data.

We concluded that the proposed algorithms achieve better performance than

the conventional two-stage approaches. In particular, the incremental version,
named EM-LR-Link-K, produces the best results on the considered datasets and
has the important advantage of being largely insensitive to initialization.

Future work includes the development of adaptive criteria for incrementing

the number of hidden neurons, as well as criteria for deciding when to stop
adding more neurons, to avoid over-fitting.
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