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Abstract. The Blind Source Separation (BSS) problem is often solved
by maximizing objective functions reflecting the statistical dependency be-
tween outputs. Since global maximization may be difficult without exhaus-
tive search, criteria for which it can be proved that all the local maxima
correspond to an acceptable solution of the BSS problem have been devel-
oped. These criteria are used in a deflation procedure. This paper shows
that the “spurious maximum free” property still holds for the minimum
range approach when the sources are extracted simultaneously.

1 Introduction

Blind Source Separation (BSS) aims at recovering source signals from mixtures
of them only based on mild assumptions on the sources and on the mixing
scheme, justifying the “blind” term. We are interested here in the basic and
most common mixture model[1]: X = AS, where X = [X1, · · · , XK ]T and
S = [S1, · · · , SK ]T are respectively the observed mixtures and the source vectors,
both of dimension K, and A is the nonsingular mixing matrix of order K.

In the blind context, no specific knowledge on the source is available except
the basic assumption of their independence. Thus, one looks for an unmixing
matrix B such that the extracted sources, which are the components of Y = BX
are the most independent in some sense. This approach often leads to the
maximization of an objective function which possesses the contrast property
according to Comon [2]: it is maximized if and only if its argument B equals
A−1 up to a left multiplication by a diagonal and a permutation matrices.

Recently, both simulation and theoretical approaches have indicated that
entropy based BSS contrast functions suffer from the existence of spurious max-
ima (see [8] and references therein); these contrasts are not discriminant, in the
sense that each of their local maximum does not necessarily correspond to a
non-mixing solution of the BSS problem. Hence, adaptive methods such as gra-
dient ascent can yield unmixing matrix B such that BA is not the product of a
diagonal and a permutation matrix. On the other hand, it also exists contrasts
for which the discriminacy property has been proved, but only when the sources
are extracted one by one, as recalled in the next section. In section 3, we show
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that this property still holds for the minimum range approach even when the
sources are separated simultaneously.

2 Discriminant contrasts for deflation

The possible existence of “spurious maxima” of a contrast is a critical issue
in BSS, which often involves iterative optimization algorithms. This point has
motivated the work of Delfosse and Loubaton in 1995, even though at that time,
the existence of such maxima was not established. In order to avoid this possible
problem, the authors of [3] proposed to extract the sources sequentially, one by
one, using a deflation approach. Assuming that k− 1 sources have already been
extracted, a k-th source can be extracted by maximizing a non-Gaussianity index
of bkX, with respect to the k-th row bk of B, subjected to the constraint that
i) bkX has unit variance and ii) is non correlated with bjX for j < k. Many
non-Gaussianity indexes possess the contrast property in the sense that they can
be maximized if and only if their argument bkX is proportional to the source
with the highest non-Gaussianity index (among the K + 1 − k sources which
have not yet been extracted). The maximum square kurtosis κ2(bkX) has been
suggested as a deflation objective function for BSS, where κ(y) is the kurtosis
of y. It is proved in [3] that all the local maxima of this function are attained
when the k-th output is proportional to one source; the contrast is discriminant.
The global maximization thus reduces to a local maximization, which is much
simpler and can be achieved by using gradient-ascent methods.

Recently, Vrins et al. [4] proved that the minimum range criterion also pos-
sesses this interesting “discriminacy” property when separating bounded sources.
We define the range R(Y ) of a bounded random variable Y as the difference
between the upper bound and lower bound of the support of Y . The min-
imum range deflation approach consists in minimizing successively R(bkX),
k = 1, . . . ,K, with respect to the vector bk, subjected to the aforementioned
constraints i) and ii).

However, all deflation methods share a same specific performance problem.
In practice, the contrast function must be estimated by some empirical con-
trast function. Therefore, the sources cannot be exactly extracted and some
statistical error are unavoidable. Due to the non correlation constraint, the er-
ror committed in the previously extracted sources will propagate to subsequent
sources. Moreover, the latter constraint must be enforced empirically through
sample correlation, resulting in further errors. When many sources have to be
extracted, these errors are cumulated. Hence, the “quality extraction” of the
last extracted sources is much worst than the quality of the first extracted ones.
From this viewpoint, methods that extract all sources at the same time are
preferable. Unfortunately, to the authors knowledge, there is no result of dis-
criminacy property of any contrast in such a simultaneous approach. In this
paper, it is proved that the discriminacy property is not a specificity of the se-
quential approach. The simultaneous extraction method based on the sum of
the output range also possesses this property, as shown in the next section.
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3 Discriminacy property of the simultaneous approach us-
ing minimum range

The minimum range approach for the simultaneous extraction of bounded sources
has been first introduced by Pham in [6]. The following criterion C was intro-
duced, which can be viewed as the simultaneous counterpart to log R(bkX):

C(B) =
K∑

i=1

log R(biX)− log |detB|.

This criterion is to be minimized with respect to B. Clearly, it prevents B to
be singular, therefore we shall focus to B ∈ M(K), the set of all nonsingular
matrices of order K.

It has been shown in [5, 6] that −C is a contrast in the sense of Comon [2].
The proof in [5] of this result relies on the fact that the range functional is
strictly superadditive in the sense of Huber (see [5]), that is R2(X + Y ) >
R2(X) + R2(Y ) for any pair of independent bounded random variables X and
Y . In fact the range functional possesses a stronger property which implies the
strict superadditivity:

R(X + Y ) = R(X) + R(Y )

for any pair of independent bounded random variables X and Y (see [4, 6]). This
equality plays a crucial role in proving the discriminacy property of the contrast
−C. In particular, denoting by Wi1, . . . ,WiK the components of biA, one has

R(biX) = R(biAS) =
K∑

j=1

|Wij |R(Sj),

since R(αX) = |α|R(X) for any real number α and any bounded random variable
X. The above relation shows that it is of interest to rewrite C in terms of the
matrix W = BA which has general element Wij , which yields

C(B) =
K∑

i=1

log
[ K∑

j=1

|Wij |R(Sj)
]
− log |detW|+ log |detA|.

Clearly, minimizing C(B) over M(K) is equivalent to minimizing

C̃(W) =
K∑

i=1

log
[ K∑

j=1

|Wij |R(Sj)
]
− log |detW| (1)

also overM(K). The point B minimizing C is related to the point W minimizing
C̃ by the relation W = BA. The contrast property of −C means that C̃
attains its global minimum at and only at matrices W which are products of a
permutation and a diagonal matrix. In the remaining part of this paper, it is
shown that there is no other local minimum of this criterion.
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The function C̃ is not everywhere differentiable onM(K), due to the absolute
value in (1). To overcome this difficulty, we introduce the subsets MI(K) of
M(K), indexed by subsets I of {1, . . . ,K}2, defined by

MI(K) = {W ∈M(K) : Wij 6= 0 if and only if (i, j) ∈ I}.

Due to the non singularity condition, a subset MI(K) may be empty for partic-
ular I. Thus we shall restrict ourselves to the collection I of distinct subsets I of
{1, . . . ,K}2 such that MI(K) is not empty. Then the subsets MI(K), I ∈ I,
form a partition of M(K), since they are clearly disjoint and their union equals
M(K). Therefore any local minimum point of C̃ would belong to some MI(K)
with I ∈ I and is necessarily a local minimum point of the restriction of C̃ on
MI(K).

The key point is that the restriction of C̃ to MI(K), i ∈ I, is infinitely
differentiable as a function of the nonzero elements of its matrix argument in
MI(K). Thus, one may look at the first and second derivatives of the restriction
of C̃ to MI(K) to identify its local minimum points.

Lemma 1 For I ∈ I, the restriction of C̃ to MI(K) admits the first and second
partial derivatives

∂C̃(W)
∂Wij

=
sign(Wij)R(Sj)∑K

l=1 |Wil|R(Sl)
−W ij , (i, j) ∈ I (2)

∂2C̃(W)
∂Wij∂Wkl

= W kjW il, (i, j) ∈ I, (k, l) ∈ I, k 6= i,

∂2C̃(W)
∂Wij∂Wil

= − sign(Wij)sign(Wil)R(Sj)R(Sl)

[
∑K

k=1 |Wik|R(Sk)]2

+ W ijW il, (i, j) ∈ I, (i, l) ∈ I,

where sign(x) = ±1 according to x > 0 or x < 0 (and can be either +1 or -1 if
x = 0) and W ij denote the (j, i) element of W−1.

The above Lemma allows one to characterize the stationary points of the
restriction of C̃ to MI(K), by setting its derivative to zero, yielding

W ij =
sign(Wij)R(Sj)∑K

l=1 |Wil|R(Sl)
, (i, j) ∈ I.

Thus one get the following corollary.

Corollary 1 Let I ∈ I, then for any W ∈ MI(K) which is a stationary point
of the restriction of C̃ on MI(K):

{(i, j) ∈ {1, . . . ,K}2 : W ij 6= 0} ⊇ I

and
∂2C̃(W)
∂Wij∂Wil

= 0, (i, j) ∈ I, (i, l) ∈ I.
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The above corollary is the key point for proving the following Lemma.

Lemma 2 Let I ∈ I such that there exists a pair of indices i, j in {1, . . . ,K}
for which the i-th and the j-th sections of I are not disjoint (the i-th section of
I is the set {k ∈ {1, . . . ,K} : (i, k) ∈ I}). Then the restriction of C̃ in MI(K)
does not have a local minimum point.

Lemma 2 allows one to eliminate subsets I in I for which the restriction of
C̃ in MI(K) does not have a local minimum point. It can be proved that the
only subset left is the one such that its i-th section reduces to a single point, for
all i = 1, . . . ,K. This yields the discriminacy property of C̃.

Proposition 1 The only local minimum points of C are the matrices W which
are the product of a (nonsingular) diagonal and a permutation matrix. (They
are also the global minimum points.)

4 Conclusion

This work has focussed on the non existence of local maxima of BSS contrasts.
Existing results have established that the square kurtosis and minus the output
ranges both possess this property, when they are used in a deflation approach.
This is a rather restrictive constraint though, since one often prefers a simulta-
neous separation in order to avoid errors cumulation. In this paper, it is shown
that the minimum range criterion, even used in a simultaneous approach to the
blind separation of bounded sources also possesses this “discriminacy” property.
To the authors knowledge, this contrast is the only one for which this property
has been proved up to now in the simultaneous approach.

5 Appendix: proofs of lemmas

Proof of Lemma 1
To compute the partial derivatives of C̃ given by (1), we note that

d|Wij |/dWij = sign(Wij) if Wij 6= 0.

and that from [7]

∂ log detW
∂Wij

=
[
∂ log detW

∂W

]
ij

=
[
W−1T

]
ij

= W ij .

Let us compute the partial derivative of W ij with respect to Wkl. We note
that W ij = tr(EijW−1) where Eij is the matrix with only one nonzero element
at the (i, j) place which equals 1 and tr denotes the trace, hence [7]

∂tr(EijW−1)
∂Wkl

= −
[
(W−1EijW−1)T

]
kl

= −
[
W−1EijW−1

]
lk

= −W ilW kj .
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This yields the formula for the second partial derivatives of restriction of C̃ to
MI(K) as given by the Lemma.

Proof of Lemma 2
Let W ∈ MI(K) be a stationary point (if exists) of the restriction of C̃ to

MI(K), we shall show that it cannot realize a local minimum of this function.
By assumption, there exists i, j, k in {1, . . . ,K} and i 6= j, such that (i, k) and
(j, k) are both in I. Therefore, by Corollary 1, W ik and W jk are non-zero, hence
by Lemma 1: ∂2C̃/∂Wik∂Wjk = W ikW jk 6= 0. Also, by the same corollary,
∂2C̃/(∂Wik)2 = ∂2C̃/(∂Wjk)2 = 0. Thus, let W̃ be a matrix differing (slightly)
from W only at the indexes (i, k) and (j, k): W̃ik = Wik + ε, W̃jk = Wjk + η,
then since the first partial derivatives of C̃ vanishes at W, a second order Taylor
expansion yields:

C̃(W̃) = C̃(W) + W ikW jkεη + O((|ε|+ |η|)3)

as ε, η → 0. Therefore, C̃(W̃) < C̃(W) if ε and η both are small enough and
their product have the same sign as W ikW jk. This shows that W cannot realize
a local minimum of C̃ in MI(K).

Proof of Proposition 1
By Lemma 2, in order that the restriction of C̃ to MI(K) admits a local min-

imum point, it is necessary that the sections I1, . . . , IK of I are all disjoint. On
the other hand, none of these sections can be all empty since otherwise MI(K)
would be empty. Therefore these sections must be reduced to a single point:
Ii = {(i, ji)}, i = 1, . . . ,K where j1, . . . , jK are indexes in {1, . . . ,K}. These
indexes must be distinct since otherwise MI(K) would be empty. But a matrix
in MI(K) where I = {(1, j1), . . . , (i, jK)} with j1, . . . , jK being a permutation
of 1, . . . ,K, is simply a product of a diagonal and a permutation matrix. Such
matrix is already known to realize the global minimum of C̃. This completes
the proof.
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