
Efficient Forward Regression with

Marginal Likelihood

Ping Sun and Xin Yao
CERCIA, School of Computer Science

University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK

Abstract. We propose an efficient forward regression algorithm based
on greedy optimization of marginal likelihood. It can be understood as a
forward selection procedure which adds a new basis vector at each step
with the largest increment to the marginal likelihood. The computational
cost of our algorithm is linear in the number n of training examples and
quadratic in the number k of selected basis vectors, i.e. O(nk2). Moreover,
our approach is only required to store a small fraction of all columns of the
full design matrix. We compare our algorithm with the well-known Rel-
evance Vector Machines (RVM) which also optimizes marginal likelihood
iteratively. The results show that our algorithm can achieve comparable
prediction accuracy but with significantly better scaling performance in
terms of both computational cost and memory requirements.

1 Introduction

This paper considers the regression problem with a linear model. It can be
described briefly as follows. Given a training dataset D = {(x1, t1), ..., (xn, tn)}
where ti ∈ R, xi ∈ R

d, n is the size of D and d is the dimension of an example,
we aim to infer a function f(x) which can predict unseen data. Usually, the
function f(·) is assumed to have a fixed structure and to depend on a set of
weight parameters w. In particular, we consider a function that is linear w.r.t
w, i.e.

f(x, w) =
mX

j=1

wjhj(x) = w⊤h(x), (1)

where h(x) = [h1(x), ..., hm(x)]⊤ is a vector of m fixed nonlinear map func-
tions of input x and w = [w1, ..., wm]⊤. If we set h(x) = [K(x1, x), ...,K(xn, x)]⊤,
in this case m = n and where K(x, xi) is some symmetric kernel function, the
concerned problem can be popularly termed as kernel regression [6].

The weight vector w can be found by minimizing the squared loss function,∑n
i=1 |ti − f(xi, w)|2 = ‖t − Hw‖2, where t = [t1, ..., tn] and H is the so-called

design matrix of size n × m with Hij = hj(xi). Here we refer to columns of H
as basis vectors. It is easily seen that the optimal solution to the squared loss
function can be reached at w = (H⊤H)−1H⊤t. However, it is sometimes more
useful to obtain a sparse estimate of w in practice, which corresponds to select a
small fraction of available m basis vectors. In kernel-based methods, the sparse
model (1) induced by a sparse estimate w can greatly improve the generalization
performance [6].

Before addressing the issue of how to achieve the sparseness, we firstly dis-
cuss the choice of loss function used in the sparse model construction process.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

485

The most usual one is the squared loss employed in [16, 7], which typically de-
creases as the model size increases. Hence a separate model selection criterion
(such as the minimum descriptive length, MDL) or cross-validation step is re-
quired to terminate the construction procedure in order to avoid overfitting. A
better and more natural idea is to use the loss function, estimating the model
generalization capability directly in the training process. Such examples include
generalized cross-validation (GCV) [8], leave-one-out cross validation (LOOCV)
[5] and marginal likelihood (ML) loss functions [13, 14]. This paper will focus
on the last one and the work can be extended to compare with other kinds of
loss functions in the future.

A number of algorithms in the literature have been proposed to obtain sparse
estimates. They can broadly be classified into sequential forward (or backward)
greedy algorithms [1] and LASSO-style (least absolute shrinkage and selection
operator) algorithms [12, 2]. The LOOCV-based algorithm mentioned above is
typically in the category of forward algorithms; while GCV- [8] and ML-based
algorithms [13] addressed before can be interpreted as LASSO-style approaches
[11]. In general, LASSO-style algorithms are computationally more expensive
than sequential forward greedy algorithms.

In this paper, we present a sequential forward algorithm applied to greedy
optimization of the ML loss function. In contrast to Tipping’s work [13, 15], the
relevance vector machine (RVM) which was also optimizing the ML loss function
to obtain the sparseness but with LASSO-style, the technique presented in this
paper has more attractive computational and storage properties.

We now outline the contents of the paper. In Section 2, we describe our
sequential forward algorithm in detail and analyze its time and space complexity.
In Section 3, we clarify the relations to other similar work. Experimental results
are reported in Section 4. Finally, Section 5 concludes the paper by presenting
possible directions of future research.

The following notations have been used throughout this paper. Given one
sequence of indices I, the notation H(:, I) denotes the submatrix of the columns
of H indexed by I, and similarly for H(I, :). We let Idq ∈ R

q×q denote the
identity matrix. The function ‘diag’ outputs the diagonal elements of a square
matrix and | · | denotes the determinant. Furthermore, the subscript k will be
used to denote the number of selected basis vectors.

2 Forward Selection Algorithm

The ML loss function employed in our algorithm can be written as the negative
logarithm of marginal likelihood [14], i.e.,

J =
1

2

h
t⊤(σ2Idn + α−1HH⊤)−1t + log |σ2Idn + α−1HH⊤|

i
=

1

2σ2
t⊤Pt −

log σ2

2
log |P |

(2)

where σ2, α > 0 are two hyper-parameters and P = Idn − HΣH⊤ where
Σ = (H⊤H + λIdm)−1 with the so-called regularization parameter λ = σ2α.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

486

Assuming that we have already collected (k − 1) basis vectors indexed by
Ik−1 = (i1, ..., ik−1), i.e., H(:, Ik−1), the k-th iteration then involves choosing a
previously unselected column H(:, ik) from H such that J is minimized. Since
the loss function after the k-th iteration is

Jk =
1

2σ2
t⊤Pkt −

log σ2

2
log |Pk|

=
1

2σ2

�
t⊤Pk−1t −

Ak−1(ik)2

λ + Bk−1(ik)

�
−

log σ2

2

�
log |Pk−1| + log

λ

λ + Bk−1(ik)

�
= Jk−1 − ∆Jk−1(ik),

(3)

where

Ak−1(ik) = H(:, ik)⊤Pk−1t, Bk−1(ik) = H(:, ik)⊤Pk−1H(:, ik), (4)

and

∆Jk−1(ik) =
1

2σ2
·

Ak−1(ik)2

λ + Bk−1(ik)
+

log σ2

2
· log

λ

λ + Bk−1(ik)
(5)

is the loss reduction, the index of the k-th basis vector to be included is selected
as ik = arg maxi/∈Ik−1

{∆Jk−1(i)}. If we are given Ak−1 and Bk−1, it is clear
that the computation of ∆Jk−1 is very fast.

To proceed this forward selection process, we need to update Ak−1(i), Bk−1(i)
for all i /∈ Ik from the (k−1)-th state to the k-th. To this end, it is also required
to update the matrix Pk−1, which can be realized by modifying Mk−1 ∈ R

n×(k−1)

and diagonal Dk−1 in Pk−1 = Idn −Mk−1Dk−1M
⊤
k−1. The steps involved at the

k-th iteration are summarized below:

Mk = [Mk−1 mk], mk = H(:, ik) − Mk−1(Dk−1(M
⊤

k−1H(:, ik))), (6)

diag(Dk) = [diag(Dk−1) d−1

k], dk = λ + H(:, ik)⊤mk, (7)

ek = t⊤mk, Ik = [Ik−1 ik], (8)

Ak(i) = Ak−1(i) − C(i)ek/dk, Bk(i) = Bk−1(i) − C(i)2/dk, i /∈ Ik, (9)

where

C(i) = H(:, i)⊤mk, i /∈ Ik. (10)

Obviously, the major computational cost incurred in our forward algorithm is
the step of computing C(i) for all (m− k) available basis vectors and leads to a
prohibitive O(nm) operation at each iteration. The overall complexity would be
O(nmk) when the model construction process terminates at the k-th iteration.
Furthermore, computing C(i) still requires the computation and storage of the
full design matrix H. For a large dataset, these could dramatically increase the
training time and memory consumption.

Now we consider a special case where the design matrix H is set to a ker-
nel matrix K generated by evaluating K(xi, xj) on the paired input vectors
{(xi, xj), i, j = 1, ..., n}. If K(xi, xj) is a Gaussian, the step (10) of computing
the product Kc with c ∈ R

n can be approximated quite efficiently and effectively.
Firstly, the computation of Kc is actually the well-known Fast Gauss Transform

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

487

(FGT) [10] problem in the field of computer vision. Using FGT technique could
improve the complexity from original O(n2) to O(n) cost. Secondly, we can also
accelerate computing Kc by finding a low-rank approximation Q of the kernel
matrix K. Due to the space limit, we only investigate the second method in this
paper. Standard algorithms [3] from numerical linear algebra can be exploited to
compute an approximation of the form Q = GG⊤, where G ∈ R

n×p, and where
the rank p ≪ n usually. The resulting computational complexity generally scales
as O(np2). Instead of computing Kc, we use the approximation Qc = G(G⊤c)
to replace it, which only incurs a O(np) operation instead of O(n2). If we re-
strict p to be the same as the maximal allowed number kmax of selected basis
vectors, the overall complexity of our algorithm keeps O(nk2

max
) and the storage

is O(nkmax). The property of linear scaling in n makes the presented work viable
for large-scale problems.

3 Comparisons with RVM

The RVM technique was introduced in [13] and adopted a different mechanism
to arrive at a sparse model. It can be reformulated as iteratively optimizing a
variant of the ML-based loss function (2), that is,

Jrvm =
1

2σ2
t⊤P rvmt −

log σ2

2
log |P rvm| with P rvm = Idn − HΣrvmH⊤, (11)

where Σrvm = (H⊤H + Λ)−1 and Λ is a diagonal with elements diag(Λ) =
[λ1 ... λm]. The loss function (11) uses multiple regularization parameters,
which are ultimately responsible for the sparsity property of the RVM algorithm.
This is because the optimum value for λi can be infinite, which is equivalent to
removing the i-th basis vector, as the iterative optimization proceeds. However,
the computation required for the RVM is very high and scales as O(n3). A later
improvement [15] was proposed to speed up the training of RVM. The idea is
to optimize each λi in turn while the others are fixed and it will incur O(n2q)
cost, where q is the number of updating iterations. Furthermore, their updating
steps could lead to serious instabilities due to round-off error accumulations [4].
Finally, the computation and storage of a full kernel matrix is needed for both
RVM algorithms.

4 Numerical Experiments

This section will compare the algorithm developed in this paper against other
two RVM algorithms mentioned in Section 3 to verify the usefulness of our
algorithm. All the algorithms were coded in Matlab 7.0 and run on a machine
with PIV 2G and 512M memory. To evaluate generalization performance, we
ultilize test Mean Square Error (MSE) given by 1

ntst

∑ntst

i=1(ti − f(xi))
2 where

ntst is the number of test examples and f(xi) is the predictive mean. For all

experiments, we use the Gaussian kernel defined by K(xi, xj) = exp {
|xi−xj |

2

r }
with the parameter r > 0. The parameter σ2 is set to a fixed positive value

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

488

(e.g. 1). Other parameters including λ, r and kmax are estimated via five-fold
cross validation on a subset of 1000 examples randomly selected from original
dataset. Note that ‘Forward’ is used to denote our algorithm, ‘Old RVM’ denotes
original RVM [13] and ‘New RVM’ denotes improved RVM [15].

The first comparison study is performed on three real world datasets viz.
Ozone, Boston and Abalone available from the UCI machine learning repository.
Each of them is randomly partitioned into 20 training/test data splits. Table
1 reports the test set performances of the three methods on the three datasets.
Across all datasets considered, the MSE results of our algorithm and the best
of the two RVM methods are quite comparable, which is decided by the paired
t-test with a p-value threshold of 0.01. During the experiment, we observe that
New RVM method suffers from numerical instability since it produces very bad
results for 3 out of 20 realizations on the Abalone dataset. The results given
in Table 1 have deleted these bad entries (in italic). In contrast to our forward
algorithm, RVM algorithms produce more sparse models than ours but it is still
arguing whether the high sparsity is useful or not [9].

Table 1: The results of three algorithms on the three benchmark regression datasets.
The mean squared error (MSE) with standard deviation over 20 realizations are re-
ported. d denotes the number of input dimension. The number in parentheses reflects
the number of selected basis vectors.

Dataset d n ntst Forward Old RVM New RVM

Ozone 8 250 80 16.33±2.91 (100) 16.66 ± 2.79 (8) 16.39±2.79 (7)
Boston 12 481 25 7.76±3.99 (150) 7.75±3.96 (60) 7.78±3.60 (78)
Abalone 8 1000 3177 0.438±0.009 (100) 0.444±0.009 (25) 0.489±0.029 (85)

We then demonstrate the scaling performance of the algorithms presented as
the size of training data increases. This study was conducted for the California
Housing dataset (available from StatLib repository) which has 20640 examples.
Of those, 10640 instances are used to test and others are employed to construct 10
training datasets with the size ranging from 1000 to 10000. We set the parameter
kmax for our forward algorithm at the minimum between 10% of the training size
and 500. Figure 1 shows the computational time and test NMSE (normalized
MSE) of the three methods for varying training data sizes. As expected, our
algorithm scales quite impressively with comparable prediction accuracy when
compared to old and new RVMs. Note that the upper limits of old and new
RVMs are just 2500 and 4500, respectively.

5 Conclusions

We propose an efficient forward kernel modeling algorithm based directly on
optimizing marginal likelihood. This has been achieved by adopting a new for-
ward selection scheme and efficient recursive updating steps. This work can
be extended to other types of kernel-based methods such as Gaussian Process
Regression (GPR) by changing the loss function. A detailed comparison study
with other sparse algorithms will be reported in the future work.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

489

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

Size of the training data (n)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Regression run time

Old RVM

New RVM

Forward

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Size of training data (n)

N
or

m
al

iz
ed

 M
SE

 (N
M

SE
)

Regression error

Old RVM
New RVM
Forward

Fig. 1: The computational time and test NMSE for different approaches on the
California Housing dataset.

Acknowledgments

The authors are grateful to Mike Tipping for his Matlab code of new RVM; to
Pete Duell for reading a draft of this paper. This work is partially supported by
ORS and the School of CS through PhD studentship to the first author.

References

[1] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning for radial
basis function networks. IEEE Trans. on NN, 2(2):302–309, 1991.

[2] M. A. T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans. on PAMI,
25(9):1150–1159, 2003.

[3] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
JMLR, 2:243–264, 2002.

[4] G. H. Golub and C. V. Loan. Matrix Computations. Johns Hopkins Univ. Press, 1996.

[5] X Hong, P M Sharkey, and K Warwick. A robust nonlinear identification algorithm using
PRESS statistic and forward regression. IEEE Trans. on NN, 14(2):454–458, 2003.

[6] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to
kernel-based learning algorithms. IEEE Trans. on NN, 12(2):181–201, 2001.

[7] P. B. Nair, A. Choudhury, and A. J. Keane. Some greedy learning algorithms for sparse
regression and classification with mercer kernels. JMLR, 3:781–801, 2002.

[8] Mark J. L. Orr. Local smoothing of RBF networks. In ISANN, Hsinchu, Taiwan, 1995.

[9] C E Rasmussen and J Quinonero-Candela. Healing the Relevance Vector Machine through
Augmentation. In ICML ’05, pages 689–696, 2005.

[10] V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast Computation of Sums of
Gaussians in High Dimensions. Technical report, UM CS Department, 2005.

[11] Volker Roth. The generalized LASSO. IEEE Trans. on NN, 15(1):16–27, 2004.

[12] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal Statistical
Soc. (B), 58:267–288, 1996.

[13] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. JMLR,
1:211–244, 2001.

[14] M. E. Tipping. Bayesian inference: An introduction to principles and practice in machine
learning. In Advanced Lectures on Machine Learning, pages 41–62, 2003.

[15] M. E. Tipping and A. Faul. Fast marginal likelihood maximisation for sparse bayesian
models. In AISTAT2003, Key West, FL, 2003.

[16] P. Vincent and Y. Bengio. Kernel matching pursuit. Mach. Lear., 48(1-3):165–187, 2002.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

490

