
Evolino for Recurrent Support Vector Machines

Jürgen Schmidhuber,1,2 Matteo Gagliolo,1 Daan Wierstra,1 and Faustino Gomez1

1- IDSIA - Galleria 2, 6928 Manno (Lugano) - Switzerland

2- TU Munich - Boltzmannstr. 3, 85748 Garching, München - Germany

{juergen,matteo,daan,tino}@idsia.ch

Abstract. We introduce a new class of recurrent, truly sequential SVM-like de-
vices with internal adaptive states, trained by a novel method called EVOlution
of systems with KErnel-based outputs (Evoke), an instance of the recent Evolino
class of methods. Evoke evolves recurrent networks to detect and represent tem-
poral dependencies while using SVM to produce precise outputs. Evoke is the
first SVM-based mechanism learning to classify a context-sensitive language. It
also outperforms recent state-of-the-art gradient-based recurrent neural networks
(RNNs) on various time series prediction tasks.

1 Introduction

Support Vector Machines (SVMs) [1] are powerful regressors and classifiers that make
predictions based on a linear combination of kernel basis functions. A limited way of
applying existing SVMs to time series prediction [2, 3] or classification [4] is to build
a training set either by transforming the sequential input into some static domain (e.g.,
a frequency and phase representation), or by considering restricted, fixed time win-
dows of m sequential input values. One alternative presented in [5] is to average kernel
distance between elements of input sequences aligned to m points. Of course such ap-
proaches are bound to fail if there are temporal dependencies exceeding m steps. In
a more sophisticated approach by Suykens and Vandewalle [6], a window of m previ-
ous output values is fed back as input to a recurrent model with a fixed kernel. So far,
however, there has not been any recurrent SVM that learns to create internal state rep-
resentations for sequence learning tasks involving time lags of arbitrary length between
important input events.

Our novel algorithm, EVOlution of systems with KErnel-based outputs (Evoke), ad-
dresses such problems. It evolves a recurrent neural network (RNN) as a preprocessor
for a standard SVM kernel. The combination of both can be viewed as an adaptive ker-
nel learning a task-specific distance measure between pairs of input sequences. Evoke
is a special instance of a recent, broader algorithmic framework for supervised sequence
learning called Evolino: EVolution of recurrent systems with Optimal LINear Output
[7, 8]. Evolino combines neuroevolution (i.e. the artificial evolution of neural networks)
and analytical linear methods that are optimal according to various criteria. The under-
lying idea of Evolino is that often a linear model can account for a large number of
properties of a sequence learning problem. Non-linear properties not predictable by the
linear model are then dealt with by more general evolutionary optimization.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

593



SVM

output

Recurrent 

Neural Network

4 nφ3

uu (t)

1φ

u (t)1 2 3 4 n(t)(t) u (t)u

φ2 φ φ

(a)

ΣΣ

oo

I

S S

G

G

I

G

G

FGF

G

OO

(b)

Fig. 1: (a) Evoke network. An RNN receives sequential inputs u(t) and produces neural acti-
vation vectors φ1 . . . φn at every time step t. These values are fed as input to a Support Vector
Machine, which outputs a scalar y(t). While the RNN is evolved, the weights of the SVM mod-
ule are computed with support vector regression/classification. (b) Long Short-Term Memory.
The figure shows the LSTM architecture that we use for the RNN module. This example network
has one input (lower-most circle), and two memory cells (two triangular regions). Each cell has
an internal state S together with a Forget gate (GF ) that determines how much the state is atten-
uated at each time step. The Input gate (GI ) controls access to the cell by the external inputs that
are summed into each Σ unit, and the Output gate (GO) controls when and how much the cell’s
output unit (O) fires. Small dark nodes represent the multiplication function.

2 The Evoke Algorithm

Evolino systems are based on two cascaded modules: (1) a recurrent neural network
that receives the sequence of external inputs, and (2) a parametric function that maps
the internal activations of the first module to a set of outputs. In particular, an Evoke
network is governed by the following formulas:

φ(t) = f(W,u(t),u(t − 1), . . . ,u(0)), (1)

y(t) = w0 +
k∑

i=1

li∑

j=0

wijK(φ(t), φi(j)), (2)

where φ(t) ∈ R
n is the activation at time t of the n units of the RNN, f(·), given

the sequence of input vectors u(0)..u(t), and weight matrix W. Note that, because the
networks are recurrent, f(·) is a function of the entire input history. The output y(t)∈R

of the combined system can be interpreted as a class label, in classification tasks, or as
a prediction of the next input u(t + 1), in time-series prediction.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

594



In order to find a W that minimizes the error between y(t) and the correct out-
put, we use artificial evolution [9]. Starting with random population of real-numbered
strings or chromosomes representing candidate weight matrices, we evaluate each can-
didate through the following two-phase procedure.

In the first phase, the aforementioned training set of sequence pairs, {u i, di}, i =
1..k, each of length li, is presented to the network. For each input sequence u i, starting
at time t = 0, each pattern ui(t) is successively propagated through the RNN to produce
a vector of activations φi(t) that is stored as a row in a n×∑k

i li matrix Φ. Associated
with each input sequence is a target di in D containing the correct output values for
each time step. Once all k sequences have been seen, the weights w ij of the kernel
model (equation 2) are computed using support vector regression/classification from Φ
to D, with {φi, di} as training set.

In the second phase, a validation set is presented to the network, but now the in-
puts are propagated through the RNN and the newly computed output connections to
produce y(t). The error in the classification/prediction or the residual error, possibly
combined with the error on the training set, is then used as the fitness measure to be
minimized by evolution. By measuring error on the validation set rather that just the
training set, RNNs will receive better fitness for being able to generalize. Those RNNs
that are most fit are then selected for reproduction where new candidate RNNs are cre-
ated by exchanging elements between chromosomes and possibly mutating them. New
individuals replace the worst old ones and the cycle repeats until a sufficiently good
solution is found.

In this study, Evoke is instantiated using Enforced SubPopulations (ESP; [10]) to
evolve Long Short-Term Memory (LSTM; [11]) networks. ESP differs from standard
neuroevolution methods in that, instead of evolving complete networks, it coevolves
separate subpopulations of network components or neurons.

LSTM is an RNN purposely designed to learn long-term dependencies via gradient
descent. The unique feature of the LSTM architecture is the memory cell that is capable
of maintaining its activation indefinitely (figure 1b). Memory cells consist of a linear
unit which holds the state of the cell, and three gates that can open or close over time.
The Input gate “protects” a neuron from its input: only when the gate is open, can
inputs affect the internal state of the neuron. The Output gate lets the internal state out
to other parts of the network, and the Forget gate enables the state to “leak” activity
when it is no longer useful. The gates also receive inputs from neurons, and a function
over their input (usually the sigmoid function) decides whether they open or close [11].
Hereafter, the term gradient-based LSTM (G-LSTM) will be used to refer to LSTM
when it is trained in the conventional way using gradient-descent.

ESP and LSTM are combined by coevolving subpopulations of memory cells in-
stead of standard recurrent neurons. Each chromosome is a string containing the exter-
nal input weights and the Input, Output, and Forget gate weights, for a total of 4∗(I+H)
weights in each memory cell chromosome, where I is the number of external inputs
and H is the number of memory cells in the network. There are four sets of I + H
weights because the three gates and the cell itself receive input from outside the cell
and the other cells. ESP normally uses crossover to recombine neurons. However, for
Evoke, where fine local search is desirable, ESP uses only mutation. The top quarter of

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

595



Training data G-LSTM PI-Evolino Evoke

1..10 1..29 1..53 1..257
1..20 1..67 1..95 1..374

Table 1: Generalization results for the anbncn language. The left column shows the set of
legal strings used to train each method. The other columns show the set of strings that each
method was able to accept after training. The results for G-LSTM are from [14], and for Evolino
from [7, 8]. Average of 20 runs.

the chromosomes in each subpopulation are duplicated and the copies are mutated by
adding Cauchy distributed noise to all of their weight values.

The support vector method used to compute the weights (w ij in equation 2) is a large
scale approximation of the quadratic constrained optimization, as implemented in [12].
For continuous function generation, backprojection (or teacher forcing in standard RNN
terminology) is used, where the predicted outputs are fed back as inputs in the next time
step, such that 1 becomes: φ(t) = f(W,u(t), y(t−1),u(t−1), . . . , y(0),u(0)). Dur-
ing training and validation, the correct target values are backprojected, in effect “clamp-
ing” the network’s outputs to the right values. During testing, the network backprojects
its own predictions.

3 Experimental Results

Experiments were carried out on two test problems: context-sensitive languages, and
multiple superimposed out-of-phase sine waves. These tasks were chosen to highlight
Evoke’s ability to perform well in both discrete and continuous domains. The first task
is of the type standard SVMs cannot deal with at all; the second is of the type even the
recent ESNs [13] cannot deal with.

3.1 Context-Sensitive Grammars

Standard SVMs, or any approach based on a fixed time window, cannot learn to recog-
nize context-sensitive languages where the length of the input sequence is arbitrary and
unknown in advance. For this reason we focus on the simplest such language, namely,
anbncnT (i.e. strings of n as, followed by n bs, followed by n cs, and ending with the
termination symbol T ). Classifying exemplars of this language entails counting sym-
bols and remembering counts until the whole string has been read. Since traditional
SVMs cannot solve this task at all, we compare Evoke to the pseudoinverse-based
Evolino, and the only pre-2005 subsymbolic learning machine that has satisfactorily
solved this problem, namely, gradient-based LSTM [14].

Symbol strings were presented to the networks, one symbol at a time. The networks
had 4 input units, one for each possible symbol: S for start, a, b, and c. An input is set
to 1.0 when the corresponding symbol is observed, and -1.0 when it is not present. The
network state was fed as input to four distinct SVM classifiers, and each was trained to
predict one of the possible following symbols a, b, c and T .

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

596



Two sets of 20 simulations were run each using a different training set of legal
strings, {anbncn}, n = 1..N , where N was 10 and 20. The second half of each set
was used for validation, and the fitness of each individual was evaluated as the sum of
training and validation error, to be minimized by evolution.

LSTM networks with 5 memory cells were evolved, with random initial values for
the weights between −5.0 and 5.0. The Cauchy noise parameter α for both mutation
and burst mutation was set to 0.1, i.e. 50% of the mutations is kept within this bound. In
keeping with the setup in [14], we added a bias unit to the Forget gates and Output gates
with values of +1.5 and −1.5, respectively. The SVM parameters were chosen heuris-
tically: a Gaussian kernel with standard deviation 2.0 and capacity 100.0. Evolution
was terminated after 50 generations, after which the best network in each simulation
was tested. The results are summarized in Table 3.1. While being superior for N = 10
and N = 20, the performance of Evoke degraded for larger values of N , for which both
PI-Evolino and G-LSTM achieved better results.

3.2 Multiple Superimposed Sine Waves

In [15], the author reports that Echo State Networks [13] are unable to learn functions
composed of multiple superimposed oscillators. Specifically, functions like sin(0.2x)+
sin(0.311x), in which the individual sines have the same amplitude but their frequen-
cies are not multiples of each other. In [16], a pre-wired network of oscillators inspired
by [17] learns the components of a such a function, but its performance degrades for
closer frequencies. G-LSTM also has difficulties in solving such tasks quickly.

For this task, networks with 10 memory cells were evolved for 50 generations to
predict 400 time steps of the above function, excluding the first 100 as washout time;
fitness was evaluated summing the error over the training set (points 101..400) and a
validation set (points 401..700), and then tested on another set of data points from time-
steps 701..1000. This time the weight range was set to [−1.0, 1.0], and a Gaussian
kernel with standard deviation 2.0 and capacity 10.0 was used for the SVM.

On 20 runs with different random seeds, the average summed squared error over
the test set (300 points) was 0.021. On the same problem, though, pseudoinverse-based
Evolino reached a much better value of 0.003. Experiments with three superimposed
waves, as in [7, 8], gave unsatisfactory results.

4 Conclusion

We introduced the first kernel-adapting, truly sequential SVM-based classifiers and pre-
dictors. They are trained by the Evoke algorithm: EVOlution of systems with KErnel-
based outputs. Evoke is a special case of the recent Evolino class of algorithms [7, 8]
in which a supervised learning module (SVM in this case) is employed to assign fitness
to the evolving recurrent systems that pre-process inputs. Our particular Evoke imple-
mentation uses the ESP algorithm to coevolve the hidden nodes of an LSTM RNN.

This versatile method can deal with long time lags between discrete events as well
as with continuous time-series prediction. It is able to solve a context-sensitive gram-
mar task that standard SVMs cannot solve even in principle. It also outperforms ESNs

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

597



and previous state-of-the-art RNN algorithms for such tasks (G-LSTM) in terms of gen-
eralization. Finally, Evoke also quickly solves a task involving multiple superimposed
sine waves on which ESNs fail, and where G-LSTM is slow.

The present work represents a pilot study of evolutionary recurrent SVMs. As for
its performance, Evoke was generally better than gradient-based LSTM, but worse than
the pseudoinverse-based Evolino [7, 8]. One possible reason for this could be that the
kernel mapping of the SVM component induces a more rugged fitness landscape that
makes evolutionary search harder. Future work will further explore Evoke’s limitations,
and ways to circumvent them, including the co-evolution of SVM kernel parameters.

References

[1] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[2] S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time series using support vector
machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, IEEE Workshop on Neural
Networks for Signal Processing VII, page 511. IEEE Press, 1997.

[3] K. Müller, A. Smola, G.Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting time series
with support vector machines. In W. Gerstner et al., editor, Artificial Neural Networks - ICANN 1997,
pages 999–1004. Springer, 1997.

[4] Jesper Salomon, Simon King, and Miles Osborne. Framewise phone classification using support vector
machines. In Proceedings International Conference on Spoken Language Processing, Denver, 2002.

[5] H. Shimodaira, K.-I. Noma, M. Nakai, and S. Sagayama. Dynamic time-alignment kernel in support
vector machine. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-
mation Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[6] J. A. K. Suykens and J. Vandewalle. Recurrent least squares support vector machines. IEEE Transac-
tions on Circuits and Systems-I, 47(7):1109–1114, 2000.

[7] J. Schmidhuber, D. Wierstra, and F. J. Gomez. Evolino: Hybrid neuroevolution / optimal linear search
for sequence prediction. In Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 853–858. Morgan Kaufman, 2005.

[8] D. Wierstra, F. J. Gomez, and J. Schmidhuber. Modeling non-linear dynamical systems with Evolino.
In Proc. GECCO 2005, Washington, D. C., pages 1795–1802, New York, 2005. ACM Press.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor,
1975.

[10] F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD thesis, Department of Computer
Sciences, University of Texas at Austin, 2003.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

[12] R. Collobert, S. Bengio, and J. Marithoz. Torch: a modular machine learning software library. Technical
Report 02-46, IDIAP-RR, 2002.

[13] H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless commu-
nication. Science, 304:78–80, 2004.

[14] F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context free and context sensitive
languages. IEEE Transactions on Neural Networks, 12(6):1333–1340, 2001.

[15] H. Jaeger. The echo state approach to recurrent neural networks, 2004. — seminar slides, available at
http://www.faculty.iu-bremen.de/hjaeger/courses/
SeminarSpring04/ESNStandardSlides.pdf.

[16] Vlad Trifa. Associative memory models based on coupled oscillators, 2005. — Student project. See
http://birg.epfl.ch/page57466.html.

[17] L. Righetti, J. Buchli, and A.J. Ijspeert. Dynamic Hebbian learning in adaptive frequency oscillators.
Physica D, 2005. In Press.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

598


