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Abstract. This paper is the first of a two paper series that deals with an important problem 
in on-line learning mechanisms for autonomous agents that must perform non trivial tasks 
and operate over extended periods of time. The problem has to do with memory, and, in 
particular, with what is to be stored in what representation and the need for providing a 
memory management system to control the interplay between different types of memory. 
To study the problem, a two level memory structure consisting of a short term and a long 
term memory is introduced in an evolutionary based cognitive mechanism called the 
Multilevel Darwinist Brain. A management system for their operation and interaction is 
proposed that benefits from the evolutionary nature of the mechanism. Some results 
obtained during operation with real robots are presented in the second paper of the series. 

1 Introduction 

On-line learning in autonomous agents and robots is a very complex problem that has been 
addressed by many authors from different points of view [1], [2], [3]. Traditional learning 
architectures have usually been designed for a given set of problems or environments and in 
most cases only provide mechanisms for the limited modification of parameters (learning) 
according to a given preset value system. A more promising approach would be to introduce 
cognitive architectures where every element could be autonomously modified, including the 
value system. Thus, the challenge becomes how to construct such architecture without 
introducing too many designer mediated constraints. In this line Weng et al. [4] [5] 
developed an approach for autonomous mental development (AMD) and provided a 
description of the role that AMD should play in artificial intelligence. A similar concept is 
that of cognitive developmental robotics (CDR) [6]. The key aspect of CDR is that the 
control structure should reflect the robot’s own process of understanding through interactions 
with the environment.  
 We have addressed the problem from a different perspective, making use of some of 
the concepts of traditional cognition, but introducing ontogenetic evolutionary processes for 
the on-line adaptation of the knowledge bearing structures.  
 The mechanism developed is called the Multilevel Darwinist Brain [7]. The base for 
the work is the establishment of the main features we would like to see in the agent’s on-line 
operation. That is, the agent must autonomously extract the relevant information for the 
creation of all the models involved in its cognitive architecture, including its current value 
system through a satisfaction model, and discard the rest. In a certain way this is a sort of an 
attention mechanism over its sensorial inputs. In addition, depending on the circumstances it 
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must be able to select the relevant models in order to cope with the current situation. In our 
case, and following a view of cognition similar to that of Walter Freeman [8], where the 
agent only perceives what it expects or predicts, the models it chooses for modelling the 
world, itself or the satisfaction it will achieve are determinant in what can be learnt as they 
provide the expectations used by the value system and the value system itself.  
 Furthermore, the agent must be able to transform data into knowledge creating 
subjective internal representations that are usable and can be accessed in the future. This 
means that the acquired knowledge must be used to adapt to repeated situations or to 
facilitate learning processes in new situations. In addition, the agent must be able to induce 
internal models extracting conclusions from guided behaviours.  
 From these requirements two elements become very important: on one hand, a 
mechanism that allows for the on-line learning of all the models and, at the same time 
provides timely proposed actions when the agent needs them, this is the function of the initial 
implementation of the Multilevel Darwinist Brain; on the other, there is a need for a dynamic 
memory management structure so that the information that is learnt can be reused and the 
learning process adapted to the circumstances and environments the agents find themselves 
in. This is the purpose of the work presented in this two paper series where we introduce a 
two level memory system with a Short Term Memory (STM) and a Long Term Memory 
(LTM) each one with its own type of information and management structure. In addition, we 
propose a dynamic mutual regulation mechanism so that their operation can be regulated to 
improve the performance of the agent. 
 The rest of the paper is structured as follows: Section 2 provides a brief overview of 
the Multilevel Darwinist Brain. Section 3 deals with the memory representations and 
management. Finally, section 4 draws some conclusions from this work. The second paper 
of the series provides a few examples of operation with this mechanism. 

2 The Multilevel Darwinist Brain 

The Multilevel Darwinist Brain (MDB) is a Cognitive Mechanism [9] that allows a general 
autonomous agent to decide the actions it must apply in its environment in order to fulfil its 
motivations. In its development, we have resorted to bio-psychological theories by 
Changeaux [10], Conrad [11] and Edelman [12] in the field of cognitive science relating the 
brain and its operation through a Darwinist process.  
 To implement the MDB, an utilitarian cognitive model [7] was adopted which starts 
from the premise that to carry out any task, a motivation (defined as the need or desire that 
makes an agent act) must exist that guides the behaviour as a function of its degree of 
satisfaction. From this basic idea, the concepts of action, world and internal models (W and 
I), satisfaction model (S) and action-perception pairs (set of values made up by the sensorial 
inputs and the satisfaction obtained after the execution of an action in the real world) are used 
to construct a cognitive mechanism. Its functional structure is shown in Figure 1. 
 Two processes must take place in a real non preconditioned cognitive mechanism: 
models W, I and S must be obtained as the agent interacts with the world, and the best 
possible actions must be selected through some sort of internal optimization process using 
the models available at that time. The main operation can be summarized by considering that 
the selected action is applied to the environment through the actuators obtaining new sensing 
values. These acting and sensing values provide a new action-perception pair that is stored 
in the action-perception memory (Short-Term Memory from this point forward). Then, the 
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model learning processes start (for world, internal and satisfaction models) trying to find 
functions that generalize the real samples (action-perception pairs) stored in the Short-Term 
Memory. The best models in a given instant of time are taken as current world and internal 
models and current satisfaction model and are used in the process of optimizing the action 
with regards to the predicted satisfaction. When an action is needed, the best one obtained 
according to the models is applied again to the environment through the actuators obtaining 
new sensing values. 
 These steps constitute the basic operation cycle of the MDB, and we will call it an 
iteration of the mechanism. As more iterations take place, the MDB acquires more 
information from the real environment (new action-perception pairs). The models obtained 
become more accurate and, consequently, the action chosen using these models is more 
appropriate.  
 The model search process in the MDB is not an optimization process but a learning 
process (we seek the best generalization in time, not minimizing an error function in a given 
instant t). Consequently, the search techniques must allow for gradual application, as the 
information is known progressively and in real time. To satisfy these requirements we have 
selected Artificial Neural Networks (there is no restriction on the type of ANN) as the 
mathematical representation for the models and Evolutionary Algorithms as the most 
appropriate search technique. The algorithm we have used most often is the PBGA [13] 
although successful examples have been obtained with other Genetic and/or evolutionary 
strategies. Evolutionary techniques permit a gradual learning process by controlling the 
number of generations of evolution for a given content of the short-term memory (usually no 
more than four). The learning process takes place through input/output pairs using as fitness 
function the error between the predicted values provided by the models and the real values 
for each action-perception pair in the STM.  

3 Memory in an on-line learning mechanism 

Any cognitive architecture that provides learning capabilities needs to have some kind of 
memory structure in order to store past information that could be used in the learning 
process. In the MDB we have included a memory management system that considers two 
elements, the Short Term Memory (STM) and the Long Term Memory (LTM), and an 
interplay mechanism that connects their behaviour. 

Fig. 1: Block diagram of the Multilevel Darwinist Brain 
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3.1 Short term memory  

The Short Term Memory is a memory element that stores data obtained from the real time 
interaction of the agent with its environment. The internal models the agent creates during 
the learning process should predict and generalize all the data stored in the STM. Thus, what 
is learnt and how it is learnt depends on the contents of the STM during time. Obviously, it is 
not realistic to store all the samples acquired throughout an agent's lifetime. The STM must 
be limited in size and, consequently, a replacement strategy is required in order to store the 
information the agent considers more relevant in a given instant of time. The replacement 
strategy should be dynamic and adaptable to the needs of the agent and, therefore, it must be 
subject to external regulation. For this reason, we have designed a replacement strategy that 
labels the samples using four basic features related to saliency and temporal relevance: 
The point in time a sample is stored (T): it favours the elimination of the oldest samples, 
maximizing the learning of the most current information acquired. 
The distance between samples (D): measured as the Euclidean distance between the action-
perception pair vectors, this parameter favours the storage of samples from all over the 
feature space in order to achieve a general modelling.  
The complexity of a sample to be learnt (C): this parameter favours the storage of the hardest 
samples to be learnt. To calculate it, we use the error provided by the current models when 
predicting a sample. 
The relevance of a sample (R): this parameter favours the storage of the most particular 
samples, that is, those that, even though they may be learnt by the models very well, initially 
presented large errors. 
 Thus, each sample is stored in the STM has a label (L) that is calculated every iteration 
as a linear combination of these four basic terms: 
 
 
where the constants Ki control the relevance of each term. Thus, the operation of the STM 
can be regulated through the modification of these four parameters. Depending on the value 
of the constants Ki different storage policies can be obtained. The regulation of the 
parameters can be carried out by the cognitive mechanism or by other parts of the memory 
system so as to improve the learning and generalization properties. Here we will concentrate 
on memory interactions.  

3.2 Long term memory  

The Long Term Memory is a higher level memory element, because it stores information 
obtained after the analysis of the real data stored in the STM. From a psychological point of 
view, the LTM stores the knowledge acquired by the agent during its lifetime. This 
knowledge is represented in the MDB as models (world, internal and satisfaction models) 
and their context, so, the LTM stores the models that were classified by the agent as relevant 
in certain situations (context). 
 In an initial approach we have considered that a model must be stored in the LTM if it 
predicts the contents of the STM with high accuracy during an extended period of time 
(iterations in the MDB). If this happens, such model could be considered as acquired 
knowledge. We don’t want to store models obtained over equivalent Short Term Memories, 
that is, equivalent contexts. Thus, every time a new model is a candidate for inclusion in the 
LTM (it has been stable in its prediction of the STM), it is phenotypically compared with the 
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rest of models in the LTM. This is done through their crossed predictionof  their associated 
contexts (STM contents when they accessed the LTM) in order to decide if it is a new model 
or similar to an existing one. If they predict each other´s context well, they are taken as 
models of the same phenomena. 
 From a practical point of view, the addition of the LTM in the MDB, avoids the need 
of re-learning the models in a problem with a real agent in a dynamic situation every time the 
agent changes into different states (different environments or different operation schemas). 
The models stored in the LTM in a given instant of time are introduced in the evolving 
populations of the models of the MDB as seeds so that if the agent returns to a previously 
learnt situation, the model will be present in the population and the prediction will be 
accurate soon. If the new situation is similar to one the agent has learnt before, the fact of 
seeding the evolving population with the LTM models will allow the evolutionary process to 
reach a solution very fast. 

3.3 Memory interplay  

We have developed a mutual regulation system to control the interaction between these 
memories in the MDB. There are two main undesirable effects in the learning process that 
can be avoided with a correct management system. 
 First of all, as we mentioned before, the replacement strategy of the STM favours the 
storage of relevant samples. But what is considered relevant could change in time (change of 
motivation or environment), and consequently the information stored in the STM should also 
change so that the new models generated correspond to the new situation. If no regulation is 
introduced, when situations change, the STM memory will be polluted by information from 
previous situations (there is a mixture of information) and, consequently, the models that are 
generated do not correspond to any one of them. 
 These intermediate situations can be detected by the replacement strategy of the LTM 
as it is continuously testing the models to be stored in the LTM. Thus, if it detects a model 
that suddenly and repeatedly fails in the predictions of the samples stored in the STM, it is 
possible to assume that a change of context has occurred. This detection will produce a 
regulation of the parameters controlling the replacement in the STM so that it will purge the 
older context. It can even become a completely temporal strategy for a while. This purge will 
allow new data to fill the STM and thus the models can be correctly generated. It is a clear 
case of LTM monitoring affecting the operation of the STM and thus the process by which 
the models are generated. 
 The other undesirable effect we must avoid is the continuous storage of models in the 
LTM. This happens because the data stored in the STM are not general enough and the 
models seem to be different although they model the same situation. The replacement 
strategy of the LTM can detect if the agent’s situation has changed or not and, consequently, 
after a change of situation it can detect if the number of models attempting to enter the LTM 
is high. In such case, the parameters of the replacement strategy of the STM are regulated so 
that we favour information that is more general by empowering parameters such as distance, 
relevance or complexity and the reduction of the influence of time.  
 Using these two strategies in the interplay between memories together with the 
management mechanisms for each one of them individually, a dynamic memory structure 
arises that improves the efficiency in the use of memory resources, minimizing the number 
of models stored in LTM without affecting performance and allowing these models to be as 
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general as possible. This last fact is quite important because, as models are used as seeds in 
the evolution processes, the more general they are the better they will adapt to new situations. 

4 Conclusions 

In this work we have presented a memory management system for the MDB that shows the 
importance of the interplay between memories in an on-line learning system. The data stored 
in the Short Term Memory are modeled and stored in the LTM as knowledge the agent can 
use in future learning situations. The replacement mechanisms of these memories are very 
interdependent as the parameters of the STM replacement strategy influence the type of 
models obtained in a stable manner and, consequently define candidates for LTM, and the 
models present in the LTM and their result over values in the STM regulate the way the 
STM acquires data. 
 With this operation schema applied to the MDB, we can obtain a behavior in the agent 
that shows two main features: the agent learns autonomously, paying attention to the relevant 
information of each situation and the agent is able to transform data into knowledge creating 
subjective internal representations that can be reused in the future. In the second paper of this 
two paper series we present a set of experiments of the application of this structure. 
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