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Abstract. Ensemble methods allow to improve the accuracy of clas-
sification methods. This work considers the application of one of these
methods, named Rotation-based, when the classifiers to combine are RBF
Networks. This ensemble method, for each member of the ensemble, trans-
forms the data set using a pseudo-random rotation of the axis. Then the
classifier is constructed using this rotation data. The results of the ensem-
bles obtained with this method are compared with the results using other
ensemble methods (including Bagging and Boosting), over 34 data sets.

1 Introduction

Using ensemble methods [1] is one of the most natural methods for trying to
improve the accuracy of a neural network classifier. This work considers an
ensemble method, named Rotation-based, for the combination of RBF Networks.

One of the most used approaches for constructing an ensemble of classifiers is
transforming the data set for each member of the ensemble. Bagging [2] trans-
forms the data set by resampling the original data set. An instance can be
selected several times, so some instances will not be present in the new data
set. The Random Subspaces [3] method obtains a new data set deleting some
attributes. Boosting [4] is a family of methods. The most prominent member is
AdaBoost. In this case the data set is modified depending on the classification
errors of the previously generated base classifier. The wrong classified examples
are assigned a greater weight, hence the next classifier will give more impor-
tance to those examples. Comparatives among ensemble generation methods
are presented in [5, 6, 7].

These method share the idea that it is necessary to modify the data set in
a way that some information is lost (i.e., instances, attributes). None of the
modifications would be considered if it was desired to obtain a unique classifier.
They are used because ensemble methods need diverse base classifiers.

Rotation-based ensembles [8] transform the data set, but in a way that all
the present information is preserved (although it is transformed). The idea is
to group the attributes, and for each group to apply an axis rotation. Hence,
all the available information (instance and attributes) in the data set is still
available. When the method was presented [8] it was compared with other
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ensemble methods using decision trees. This work evaluates its performance
when using RBF Networks.

The rest of the paper is organised as follows. Section 2 describes the method.
The experimental validation of the method is presented in section 3. Finally,
section 4 concludes.

2 Rotation-based Ensembles

2.1 Method Description

This method was presented in [8]. For each member of the ensemble a pseudo-
random transformation of the data set is done. The transformation of the data
set is done in the following steps:

• The input variables are randomly grouped.

• For each group of input variables:

– Consider a data set formed by this input variables and all the exam-
ples.

– Eliminate from the data set all the examples from a proper subset of
the classes.

– Eliminate from the data set a subset of the examples.

– Apply PCA (Principal Component Analysis) with the remaining data
set.

– Consider the components of PCA as a new set of variables. None of
the components is discarded.

• Transfrom all the training data set using as new variables the components
selected by PCA for each group.

This transformation produces a rotation of the axis. The transformed data
set has as many examples as the original data set. All the information that was
in the original data set remains in the transformed data set, because none of the
components is discarded.

The elimination of classes and examples of the data set is done because PCA
is a deterministic method, and it is not difficult (specially for big ensembles)
that some members of the ensemble had the same grouping of variables. Hence,
an additional source of diversity is needed.

Rotation-based ensembles are not useful for any kind of classifiers because it
needs a method that is not robust to axis rotations. In [8] decision trees were
used, because they are very sensitive to rotations.
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anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
cleveland-14-heart 5 307 7 6
credit-rating 2 690 9 6
german-credit 2 1000 13 7
glass 7 214 0 9
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
horse-colic 2 368 16 7
hungarian-14-heart 5 294 7 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4
labor 2 57 8 8
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letter 26 20000 0 16
lymphography 4 148 15 3
mushroom 2 8124 22 0
pendigits 10 10992 0 16
pima-diabetes 2 768 0 8
primary-tumor 22 239 17 0
segment 7 2310 0 19
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-context 11 990 2 10
vowel-nocontext 11 990 0 10
waveform 3 5000 0 40
wisconsin-breast 2 699 0 9
zoo 7 101 16 2

Table 1: Characteristics of the data sets.

2.2 Application to RBF Networks

RBF Networks can be constructed using a lot of different methods. A classical
approach consists of two steps. First, the centers and radii are selected. Then,
the output-layer weights are calculated.

In this work the implementation of the RBF Networks available in WEKA [9]
is used. For the first step, the centers are selected using the k-means clustering
method. For each cluster and input variable, the radius is calculated as the
deviation of the variable for the data in the cluster. For the second step, in
classification problems, Logistic Regression is used.

This method can be used with Rotation-based ensembles because it is sen-
sitive to rotations. The radii are calculated for each input variable. If the data
is transformed using an axis rotation, the radii are calculated from different
variables.

3 Experimental Validation

3.1 Data Sets

The data sets considered in this study appear in table 1. All of them are from
the UCI Repository [10]. For the data sets “splice” and “zoo” one attribute
was eliminated, because they were instance identifiers. For the data set “vowel”
another attribute was eliminated. It indicated if the example should be used
for training and testing. Moreover, two versions of the data set “vowel” were
considered. This data set includes some context information that is discarded
in some of the references that use this data set.

3.2 Settings

The experiments were done using WEKA [9], because it includes the implemen-
tation of ensemble methods and RBF Networks.
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For the RBF Networks the default parameters were used, with the only
exception of the number of centers. The default value is 2 centers for each
class, in this work 5 were used.

The number of classifiers in the ensembles was 10. The methods considered
were:

1. A single RBF Network.

2. A random ensemble. It is formed by several networks that were obtained
with different random seeds. The RBF construction method is not de-
terministic, because it uses the k-means method for selecting the centers.
Hence, if different random seeds are used, different networks are obtained
from the same data set and the same set of parameters.

3. Bagging [2].

4. Boosting [4]. The original boosting method was for binary problems. There
are several variants for the multiclass case, we consider AdaBoost.M1 [11].

5. Rotation-based. It has a parameter, the size of the groups of input vari-
ables. It was set arbitrarily to 3.

For comparing the methods the corrected resampled t-test statistic from [12]
was used. One of the settings recommended in this reference was used: each
method was constructed and evaluated 15 times, using a random partition of
the data with 90% for training and 10% for testing. The same partitions were
used for all the methods.

3.3 Results

Table 2 shows the classification accuracy of the different methods for each data
set. Rotation-based ensembles were compared with the rest of the methods
using the considered statistic. Rotation-based ensembles has more significant
improvements that degradations for all the other methods. The best of the
remaining methods is boosting. Rotation-based is better than boosting 4 times
and worse 3 times.

Table 3 shows the number of data sets where the method of the column has a
better result than the method of the row. For instance, Rotation-based is better
than boosting for 26 data sets and worse for 8. According to this table, clearly
the best ensemble-method is Rotation-based.

Table 4 is similar to the the previous table. The difference is that it only
considers the cases where the difference is significant according to the test. This
table also indicates that Rotation-based is the best method.

4 Conclusions and Future Work

This work has presented the application of an ensemble method, Rotation-based,
using RBF Networks. For this type of networks, the experimental validation
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Data Set Rotations Single Random Bagging Boosting
anneal 96.81±1.73 96.89± 1.69 98.00± 1.13 97.93± 1.45 98.00± 1.40
audiology 78.63±6.06 70.15± 6.80 • 75.75± 6.89 76.49± 6.99 72.30± 8.71
autos 74.97±9.38 68.81±10.10 74.13± 8.94 74.96± 8.98 75.88± 6.76
balance-scale 89.45±2.93 86.35± 4.19 • 87.73± 3.69 87.09± 2.95 • 86.04± 4.84 •
breast-cancer 70.36±5.04 70.33± 7.92 71.08± 6.57 72.01± 7.43 67.07± 4.79
cleveland-14-heart 82.15±5.84 81.93± 5.00 82.83± 5.17 83.72± 6.12 81.75± 5.98
credit-rating 84.84±3.62 81.35± 4.52 82.14± 4.13 82.62± 3.37 81.74± 3.50
german-credit 74.00±3.23 71.80± 3.76 75.40± 4.03 75.33± 3.58 72.47± 4.67
glass 72.49±7.14 63.06±10.10 • 71.50± 9.09 70.03±10.87 64.65± 8.68
heart-statlog 81.98±7.90 82.72± 6.05 84.44± 7.03 84.20± 7.98 78.02± 8.45
hepatitis 84.13±7.72 82.85± 8.06 83.71± 5.95 84.18± 4.47 82.85± 7.25
horse-colic 80.99±6.96 77.54± 8.28 79.75± 8.20 80.66± 6.68 77.60± 6.49
hungarian-14-heart 78.26±5.23 78.94± 9.35 78.93± 6.93 79.57± 7.38 76.40± 9.25
hypothyroid 93.55±0.63 94.93± 0.87 ◦ 95.44± 0.90 ◦ 95.62± 0.91 ◦ 95.69± 1.00 ◦
ionosphere 94.50±3.96 93.15± 4.30 94.28± 4.08 93.91± 3.70 93.55± 3.93
iris 97.78±4.11 96.00± 4.91 96.89± 4.95 96.89± 4.95 95.56± 5.44
labor 95.56±7.63 87.33±11.97 93.11±10.80 94.44±10.29 87.33±11.97
letter 91.13±1.01 85.35± 0.84 • 88.73± 0.92 • 89.27± 0.76 • 91.28± 0.66
lymphography 85.89±8.92 82.48± 9.64 83.01± 8.28 84.35± 7.75 82.45± 9.90
mushroom 99.30±0.26 99.58± 0.26 ◦ 99.82± 0.19 ◦ 99.86± 0.15 ◦ 99.98± 0.06 ◦
pendigits 98.07±0.40 97.13± 0.65 • 97.51± 0.65 • 97.63± 0.60 • 98.84± 0.45 ◦
pima-diabetes 76.81±3.87 73.50± 4.53 • 74.81± 4.58 74.73± 5.17 73.15± 3.46 •
primary-tumor 40.52±7.70 31.75± 6.11 • 37.25± 7.44 38.56± 7.57 36.58± 6.29
segment 94.63±1.86 92.47± 1.80 • 93.51± 1.42 • 93.65± 1.71 94.98± 1.31
sonar 84.57±9.78 83.55± 8.46 85.18± 8.64 86.20± 9.12 82.28±10.46
soybean 94.40±2.15 86.97± 4.82 • 89.23± 3.10 • 90.01± 3.22 • 92.13± 2.63
splice 95.88±1.07 95.51± 1.18 96.49± 0.70 96.57± 0.92 95.63± 0.91
vehicle 76.66±3.78 71.38± 5.21 • 73.28± 5.29 73.83± 4.99 73.66± 4.51
vote 96.02±2.51 96.03± 2.34 95.88± 2.75 95.26± 2.50 94.19± 4.21
vowel-context 95.76±2.10 90.10± 2.76 • 95.89± 1.96 95.96± 2.06 95.08± 2.61
vowel-nocontext 96.77±2.48 89.76± 3.17 • 95.08± 1.98 95.69± 2.14 94.68± 2.07 •
waveform 87.14±1.19 86.64± 1.49 86.86± 1.41 86.85± 1.30 83.84± 1.26 •
wisconsin-breast 95.44±2.86 94.49± 1.77 94.68± 2.67 95.16± 2.45 94.30± 2.96
zoo 91.12±9.75 93.32± 6.52 94.50± 7.20 95.27± 5.30 93.32± 6.52

◦, • statistically significant improvement or degradation

Table 2: Classification accuracy.

Single Random Bagging Boosting Rotations

Single - 32 33 20 27
Random 2 - 24 9 22
Bagging 1 9 - 8 21
Boosting 12 25 26 - 26
Rotations 7 12 13 8 -

Table 3: Summary of results. Number of data sets where the method of the
column has a better than the method of the row.
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Single Random Bagging Boosting Rotations

Single - 9 10 8 12
Random 0 - 1 4 4
Bagging 0 0 - 3 4
Boosting 1 3 2 - 4
Rotations 2 2 2 3 -

Table 4: Summary of results. Number of data sets where the method of the
column is significantly better than the method of the row.

shows that the ensembles obtained with the proposed method are better than
the ensembles obtained with other methods.

Rotation-based ensembles are compatible with other ensemble methods, be-
cause it only defines a random transformation of the data set. It would be
possible to do Bagging and Boosting using this transformation of the data set
for each member of the ensemble.

This work has only considered RBF Networks for classification problems.
Hence, it would be interesting to test different ensemble methods, including
Rotation-based, for regression problems.
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